

Finite Element Method

Tomasz Stręk
Institute of Applied Mechanics,

Poznan University of Technology

ul. Jana Pawla II 24, 60-965 Poznan, Poland

Room 438

www.strek.h2g.pl

DATE: 2020.03.02

X.4. Overview of the finite element method

There is an extensive literature on finite elements, both for theory and

applications. Popular books include those by Huebner [Hue1975] (a definitive
work from an engineering perspective), Hinton and Owen [Hin1979],

Zienkiewicz and Taylor [Zie2000a, Zie2000b, Zie2000c].

In this chapter, we give a sketch of the finite element procedures. This
sketch introduces important concepts of local approximation functions (linear

and quadratic), the Galerkin method, treatment of boundary conditions, and

assembly and solution of global matrices.
 The governing equations of given problem must first be discrtetised

spatially to obtain the finite element equations. The conventional Galerkin

weighted residual technique discussed in previous section/chapter is the most

powerful and general method available to achieve finite element spatial
discretisation for any set of differential equations.

X.5. Local approximations

In the finite element method, the solution u of a PDE is approximated by low-

order polynomials on local elements. The local elements constitute the mesh;

typical elements used are triangles and quadrilaterals in 2D, and tetrahedra and

hexahedra in 3D.

Figure 3.1: 2D triangular mesh.

To give a simple example, consider a triangular mesh in 2D (Figure 3.1).

We concentrate on the single triangle with corner nodes  k,j,i , and let the

values of u at the nodes be  kji u,u,u . We approximate u within the local

element by

        Tkjikji u,u,uy,xN,y,xN,y,xNu  (x.y)

where       y,xN,y,xN,y,xN kji are interpolation functions. In the simplest

case, these are linear polynomials such that

  lpppl y,xN  (x.y)

where lp is the Kronecker symbol.

For example, if the local element is the triangle with nodes at

     110100 ,,,,, , the three linear interpolation functions are

xN 11 , yxN 2 , yN 3 (x.y)

and, given nodal values  kji u,u,u , the linear approximation to u in the element

is

    kji yuuyxuxu  1 . (x.y)

We can use (for example) the following element types:

3-node triangle, linear approximation

6-node triangle, quadratic

approximation

4-node quadrilateral, bi-linear

approximation

8-node quadrilateral, bi-quadratic

approximation (serendipity element)

4-node tetrahedron, linear

approximation

10-node tetrahedron, quadratic

approximation

8-node hexahedron, tri-linear

approximation

20-node hexahedron, tri-quadratic

approximation (serendipity element)

Figures X. Examples of finite element.

X.6. Calculation of the nodal values

X.5.1. Solution of steady problems

The nodal values are pointwise approximations to the solution of a system of

PDEs

  fuL  (x.y)

defined within a domain  and with boundary conditions specified at the

boundary of . The boundary conditions typically specify and/or its derivatives.

If u is specified on the boundary, it is known as a Dirichlet boundary condition.

A natural boundary condition specifies the value of terms arising from

integration by parts, such as the flux. The PDE system might be a well-specified

problem in its own right, or it might result from an algorithm applied to a more

complex problem. Domain  can be in 2 or 3 dimensions, whilst both L and u

can have multiple components. In the above, f represents a forcing term for

the PDEs, and  uL typically includes derivatives of u up to second order.

 We represent the solution  xu of the PDE system as follows:

    xSuxu ii (x.y)

The PDE will be satisfied in the weak sense provided

    


 0dVfuLxTj , eN,...,j 1 (x.y)

for a given set of test functions jT . If L has multiple components, then T has

a corresponding number. In the Galerkin method as implemented in many

codes, the shape functions iS and the test functions jT are identical. However,

since the shape functions do not have second derivatives everywhere, we

usually integrate some terms by parts prior to the substitution of the shape

function representation for u . In the finite element method the shape function

iS for each node is continuous and identically zero outside the elements of

which the node is a part. Within each of those elements, iS is a low-order

polynomial which takes the value one at node j and zero at all other nodes.

To accomplish the integration by parts, we symbolically decompose the

operator L into first- and second-order operators

21 LLL  (x.y)

Here both 1L and 2L are first-order operators. 2L may be vector or tensor

valued, with possibly a reduction operation when the grad is applied. The weak

form of the PDE thus gives

       

     



 

  



 

  







fdVT

dVTuLdSuLTdVuLT

dVTuLdVuLTdVuLTdVuLT

j

jjj

jjjj

221

221

n (x.y)

where  is the boundary and n is the unit outward normal. Using this

integrated form of the PDE, it is now possible to approximate u using the shape

functions. This process is known as assembly, and the end result is a finite

dimensional system over the eN nodes:

i

N

j

jij ruK
e


1

, eN,...,i 1 (x.y)

where

    dVSSLdVSLSK ijjiij   
 

21 (x.y)

and

  


 fdVSdSuLSr iii 2n . (x.y)

The matrix K is called the stiffness or global matrix, and vector r is called the

load vector.

X.6.2. Solution of time dependent problems

X.6.2.1. First strategy

Let us consider time-dependent PDE equation

  fuL
t

u





 (x.y)

defined within a domain  and with boundary conditions specified at the

boundary of .  uL typically includes derivatives of u up to second order.

The numerical strategies are based on discretizing governing equations

first in time, to get a set of simpler partial differential equations, and then

discretizing the time-discrete equations in space. There are two main

discretizing in time schemes: backward Euler and CrankNicolson.

The backward Euler method uses the algorithm

  fuL
t

uu
n

nn 





1
1


 (x.y)

which is equivalent to

   fututLu nnn    11 . (x.y)

In the heart of the algorithm, the equation (x.y) is assembled and solved at each

timestep.

The CrankNicolson approximation uses the algorithm:

  fuuL
t

uu
nn

nn 





1
1

2

1


. (x.y)

Next define nn uuu  1 and verify that u satisfies

    f tutLuL
t

u n 


 
2

. (x.y)

The above equation is assembled and solved for u at each timestep.

Let us consider the backward Euler approximation with the finite element
method

   fututLu nnn    11 . (x.y)

The PDE will be satisfied in the weak sense provided

      


  011 dVfututLuxT nnnj  , eN,...,j 1 (x.y)

for a given set of test functions jT . To accomplish the integration by parts, we

symbolically decompose the operator L into first- and second-order operators

21 LLL  (x.y)

The weak form of the PDE thus gives

  

     

     

 

 

 





 











 























dVfutT

dVTuLdSuLTdVuLTdVuT

dVTuLdVuLTdVuLTdVuT

dVutLuT

nj

jnnjnjnj

jnnjnjnj

nnj





1212111

1212111

11

n
 (x.y)

The end result is a finite dimensional system over the eN nodes:

i

N

j

jij ruK
e


1

, eN,...,i 1 (x.y)

where

    dVSSLdVSLSdVSSK ijjijiij   
 

21 (x.y)

and

   






 dVfuSdSuLSr ninii 12
n . (x.y)

X.6.2.2. Second strategy

Strategies for time-dependent problems presented in previous sections were

based on discretizing governing equations first in time and then discretizing the

time-discrete equations in space.
 One can write finite element shape functions to include the time

variable and thus incorporate it into the general finite element method procedure

[Hua1999]. However, due to the conceptual simplicity of the time dimension
simpler finite difference approximations presented in the previous section are

generally favoured. Most schemes currently used are constructed in this way.

We can also discretizing governing equations first in space.

Let us consider time-dependent PDE equation

  fuL
t

u





 (x.y)

defined within a domain  and with boundary conditions specified at the

boundary of .  uL typically includes derivatives of u up to second order.

The main numerical strategies are based on discretizing governing

equations first in time, to get a set of simpler partial differential equations, and

then discretizing the time-discrete equations in space.
The PDE will be satisfied in the weak sense provided

   















0dVfuL

t

u
xTj , eN,...,j 1 (x.y)

for a given set of test functions jT .

To accomplish the integration by parts, we symbolically decompose the

operator L into first- and second-order operators 21 LLL  . Here both 1L

and 2L are first-order operators. The weak form of the PDE thus gives

 

     

       

 



 

 




















fdVTdVTuLdSuLTdVuLTdV
t

u
T

dVTuLdVuLTdVuLTdV
t

u
T

dVuLTdV
t

u
T

jjjjj

jjjj

jj

221

221

n

. (x.y)

The end result is a finite dimensional system over the eN nodes:

i

N

j

jij

N

j

jij ruKuM
ee


 11

 , eN,...,i 1 (x.y)

where




 dVSSM jiij (x.y)

    dVSSLdVSLSK ijjiij   
 

21 (x.y)

and

  


 fdVSdSuLSr iii 2n . (x.y)

The matrix M is called the mass matrix.

X.7. Assembly and sub-assembly

Although the components of K are written as integrals over the whole mesh,

they are in fact zero everywhere except on elements containing both node i and

node j. Nodes that have no element in common have a zero entry; hence K is
a sparse matrix. Assembly in FEM is carried out element by element. Each pair

of nodes of the element generates a component to be added to K . These

components are added into an element matrix, prior to being added into the

global matrix. In this process, subsets of the global vectors required as data for
assembly, including the coordinates, are selected and sorted into a standard

nodal order for the element. This is referred to as the local level; the vectors are

called local vectors. The integrals making up K have to be evaluated, and this

is done by Gauss quadrature. Standard interpolation formulae are used to
calculate the quantities concerned at quadrature points, and weighted sums of

these values are used to approximate the integral.

X.8. Boundary conditions

The finite element method distinguishes between essential and natural boundary

conditions:

a) essential (Dirichlet)

  guG  (x.y)

where the value of variable is prescribed;

b) natural (Neumann)

  suS 
 (x.y)

As an introduction to these concepts, consider the weak form of the left-
hand side of Laplace's equation:

 
 

 dS uSVd uSdV uS iii n
2 (x.y)

The last term is an integral over the boundary of the normal derivative (or flux).

This is called a natural boundary condition; the boundary integrands represent

a physical quantity (for example, flux in a diffusion problem, or stress in a linear

elasticity problem). The condition is implemented by substituting directly if the
integrand is known, or by substituting an expression involving unknowns.

Natural boundary conditions are specified at the time that the PDE problem is

specified. On the other hand, an absolute specification ii cu  at some set of

boundary nodes is called an essential boundary condition. This is enforced by

including it in the set of equations, replacing the equation which had been

formed by using iS as a test function.

To illustrate this point, suppose that node 3 is a boundary node with

value Uu 3 . The third row of the matrix is independent of other nodal values

and is given by

    Uu,...,u,u,u,...,,,, N  32100100 (x.y)

Incorporation of this boundary condition into the matrix system gives the new

system





































































...

r

U

r

r

...

u

u

u

u

...............

...KKKK

...

...KKKK

...KKKK

4

2

1

4

3

2

1

44434241

24232221

14131211

0100 (x.y)

If the matrix K is symmetric it is necessary to do a further elimination to regain

symmetry:











































































...

UKr

U

UKr

UKr

...

u

u

u

u

...............

...KKK

...

...KKK

...KKK

434

232

131

4

3

2

1

444241

242221

141211

0

0100

0

0

 (x.y)

To summarise the discussion so far, essential boundary conditions are

implemented by modification of the global matrix and right-hand side (RHS)
vector, whilst natural boundary conditions are often accounted for in the RHS

vector alone. These concepts are so important, however, that we now provide a

more detailed commentary.

In the Galerkin procedure, a term such as ExpDm (where mD denotes

partial differentiation with respect to mx , m could be i or j, and Exp might or

might not involve suffices, an unknown or another differentiation) is multiplied

by a test function T over the region  with boundary  . For all second-

order terms and some first-order terms, the integration is done by parts. This

gives:

  
 

 dS Expn TdV ExpTDdV ExpD T mmm . (x.y)

The application of boundary conditions in the finite element method

requires either that some information is used to replace the integrand resulting
from second-order terms, when T is non-zero there, or that for such test

functions the whole equation is replaced by an essential condition. So when we

implements such terms, we adds only the second integral into the equations -

either to the sparse matrix or the right-hand side vector.

The boundary integrals often have physical significance, and it is best to try to
formulate the equations to take advantage of this. In fact, many second-order

equations correspond to one of the following patterns:

 rate of change of heat with time = div (flux),

 change of momentum with time = div (stress).

For steady equations the rates would be zero. The divergences are integrated by
parts, and the boundary integrands will be the normal components of either the

flux or the stress. On interior boundaries, integrals are generated on each side,

and the net integrand is the difference.

There are three possible specifications on any particular boundary.

1. We can assert that the integrand (flux, stress, ...) is zero on an outside
boundary or the integrand is continuous on an interior boundary.

2. We can set the boundary integral, by including the appropriate value, which

will be added to the left-hand side.

3. We can specify a Dirichlet condition, in which case the equation, with its
boundary integrals, will be overwritten.

X.9. The solution stage

The finite element solution is obtained by solving






N

j

ijij ruK
1

, N,...,i 1 (x.y)

where the right-hand side is made up of boundary integrals from natural

boundary conditions, terms from essential boundary conditions and boundary

integrals. The matrix system is invariably large and sparse, and often symmetric

positive definite. To solve the matrix system we can use both direct and indirect.
The above description illustrates concepts underlying the use of finite elements

method.

X.10. Shape functions in local coordinate system

X.10.1. Basic two-dimensional C(0) rectangular elements

 The shape functions for the four noded rectangular element in local
coordinate system can be abbreviated to

Ni i i  
1

4
1 1()()   

(x.y)

where

i 1 2 3 4

 i
-1 1 1 -1

i
-1 -1 1 1

I  i i
1 -1 -1

2 1 -1

3 1 1

4 -1 1

The shape functions for the eight noded rectangular element can be summarised:

for corner nodes

Ni i i i i    
1

4
1 1 1()()()       

(x.y)

for midside nodes 0i

Ni i  
1

2
1 12()()  

(x.y)

for midside nodes 0i

Ni i  
1

2
1 1 2()()  

(x.y)

where

i 1 2 3 4 5 6 7 8

 i
-1 0 1 1 1 0 -1 -1

i
-1 -1 -1 0 1 1 1 0

i  i i
1 -1 -1

2 0 -1

3 1 -1

4 1 0

5 1 1

6 0 1

7 -1 1

8 -1 0

X.10.2. Isoparametric elements

 We can generalise these elements by using the isoparametric

representation. Consider an isoparametric formulation for an m-node element.

We can express the geometry of such elements using the nodal coordinates x
and y of element and the shape functions of element described above. Thus at

any point within an element the Cartesian coordinates may be obtained from the

expressions:

x N xi

i

m

i(,) (,)   



1

(x.y)

and

y N yi

i

m

i(,) (,)   



1

(x.y)

The Cartesian derivative of any function f defined over the element using the
expression:

f N fi

i

m

i(,) (,)   



1

(x.y)

may be obtained by the chain rule of differentiation





















f

x

f

x

f

x
 

(x.y)





















f

y

f

y

f

y
 

(x.y)

where









f N
fi

i

m

i



1

(x.y)









f N
fi

i

m

i



1

(x.y)

The terms















x x y y

(x.y)

can be obtained using the following procedure. First we evaluate the matrix

J 







































 

 

 

 
































x y

x y

N
x

N
y

N
x

N
y

i

i

m

i
i

i

m

i

i

i

m

i
i

i

m

i

1 1

1 1

(x.y)

which is termed the Jacobian matrix J. The inverse of the Jacobian is then

evaluated

J
J

 











































1 1































x x

y y

y y

x xdet

(x.y)

An element area of the element is given as

dd dxdy Jdet (x.y)

For an isoparametric element we have

  
  



xy

dd gdd fdxdyyxf

 

),(det),(),(J

(x.y)

and

  
  



xy

d gd fdxdyyxf

 

 ),(det),(),(J

(x.y)

X.10.3. Numerical integration

 We can adopt a numerical integration procedure to evaluate such

integrals

 
 



1

1

1

1

),(),(



dd gdd g

(x.y)

or






























1

1

1

1

)1,(

),1(

),(











dg

dg

dg

(x.y)

The r-point Gauss-Legendre integration rule have the form:

 
  


r

i

j

r

j

iji gwwdd g
1 1

1

1

1

1

),(),(

(x.y)

r  i
wi

1 0.00000 2.00000

2 0.577530

-0.577530

1.00000

1.00000

3 0.00000

0.774597
-0.774597

8/9

5/9
5/9

4 0.861136

-0.861136

0.339981
-0.339981

0.347855

0.347855

0.652145
0.652145

Note that r-point rule can integrate exactly polynomial functions of degree 2r-

1 or less. This type of formulation enables us to use elements of the very general
nature.

X.11. Shape functions for triangular and tetrahedral element family

X.11.1. Triangular element family

The advantage of an arbitrary triangular shape in approximating to any

boundary shape has been amply demonstrated in [Zie2000a]. The number of
nodes in each member of the family is now such that a complete polynomial

expansion, of the order needed for interelement compatibility, is ensured. This

follows by comparison with the Pascal triangle in which we see the number of
nodes coincides exactly with the number of polynomial terms required. Direct

generation of shape functions will be preferred - and indeed will be shown to be

particularly easy. Before proceeding further it is useful to define a special set of

normalized coordinates for a triangle (area coordinates) [Zie200a].
While Cartesian directions parallel to the sides of a rectangle were a

natural choice for that shape, in the triangle these are not convenient. A new set

of coordinates, 321 L,L,L for a triangle 1,2,3 is defined by the following linear

relation between these and the Cartesian system:





3

1i

ii xLx





3

1i

ii yLy





3

1

1
i

iL

(x.y)

To every set, 321 L,L,L (which are not independent, but are related by the third

equation), there corresponds a unique set of Cartesian coordinates.

At point j:









ji ,

ji ,
L iji

0

1
 for 321 ,,j  .

Solving Eq. (xxxx) gives






2

ycxba
L iii

i (x.y)

in which

33

22

11

1

1

1

2

1

yx

yx

yx

det (x.y)

and

23321 yxyxa  , 321 yyb  , 231 xxc  (x.y)

etc., with cyclic rotation of indices 1,2 and 3.

 Relation between the Cartesian coordinates and area coordinates

implicates that geometric place for iL , 321 ,,i  , are lines parallel to edge kj 

(kji ) with 0iL .

For the first element of the triangular series (linear element with three
nodes placed at the vertices of triangle) the shape functions are simply the area

coordinates. Thus

ii LN  (x.y)

for 321 ,,i  . This is obvious as each individually gives unity at one node i , zero

at others, and varies linearly everywhere.

 To derive shape functions for other elements a simple recurrence

relation can be derived. However, it is very simple to write an arbitrary triangle

of order m . We can use Silvester’s formula [Sil1969] to generate shape

functions of order m :

       321321 LPLPLPL,L,LN cbaabc  (x.y)

where

  10 iLP

  





s

j

i
is

j

jmL
LP

1

1

(x.y)

and

mcba  . (x.y)

Shape functions are generated for all nodes, all sequences of  c,b,a which

satisfies mcba  . Indices c,b,a in above equations denotes node position

in triangle. The area coordinates of this node we can evaluate using

m

c
L,

m

b
L,

m

a
L  321 . (x.y)

Number of nodes of shape function (interpolating polynomial) of order m is

equal to    221  mm . For example, if we would like to evaluate shape

functions of second order we have to calculate following expressions

011101110002020200 N,N,N,N,N,N . (x.y)

It is easy to verify that corner nodes shape functions are

     121212 330022202011200  LLN,LLN,LLN (x.y)

And mid-sides nodes shape functions are as follows

320113110121110 444 LLN,LLN,LLN  . (x.y)

We can notice that in high-order shape functions in all cases three nodes of

triangle element are placed at vertices of triangle and others on boundary or

inside the triangle.

When element matrices have to be evaluated it will follow that we are
faced with integration of quantities defined in terms of area coordinates over the

triangular region. It is useful to note in this context the following exact

integration expression

   







 2
2

2
1

0

1

0

21321321

2

!cba

!c!b!a
dLdLLLLdxdyLLL

L

cbacba . (x.y)

In paper [Str1999] procedure automatically generating shape functions

using symbolic computations has been presented.

X.11.2. Tetrahedral element family

Firstly, once again complete polynomials in three coordinates are achieved at

each stage. Secondly, as faces are divided in a manner identical with that of the

previous triangles, the same order of polynomial in two coordinates in the plane
of the face is achieved and element compatibility ensured [Zie2000a].

Once again special coordinates 4321 L,L,L,L for a tetrahedral 1,2,3,4 are

introduced defined by:





4

1i

ii xLx





4

1i

ii yLy





4

1i

ii zLz

(x.y)





4

1

1
i

iL

Solving Eq. (xxxx) gives

V

zdycxba
L iiii

i
6


 (x.y)

in which

444

333

222

111

1

1

1

1

6

1

zyx

zyx

zyx

zyx

detV  (x.y)

For the first element of the triangular series (linear element with three
nodes placed at the vertices of triangle) the shape functions are simply the area

coordinates. Thus

ii LN  (x.y)

for 4321 ,,,i  . This is obvious as each individually gives unity at one node i ,

zero at others, and varies linearly everywhere.

 We can use again Silvester’s formula [Sil1969] to generate shape

functions of order m :

         43214321 LPLPLPLPL,L,L,LN dcbaabcd  (x.y)

where

  10 iLP (x.y)

  





s

j

i
is

j

jmL
LP

1

1

and

mdcba  . (x.y)

Shape functions are generated for all nodes, all sequences of  c,b,a which

satisfies mdcba  . Indices d,c,b,a in above equations denotes node

position in triangle. The area coordinates of this node we can evaluate using

m

d
L,

m

c
L,

m

b
L,

m

a
L  4321 . (x.y)

Number of nodes of shape function (interpolating polynomial) of order m is

equal to     6321  mmm . For example, if we would like to evaluate

shape functions of second order we have to calculate following expressions

0002002002002000 N,N,N,N

001101010110100110101100 N,N,N,N,N,N .
(x.y)

It is easy to verify that corner nodes shape functions are

       12121212 440002330020220200112000  LLN,LLN,LLN,LLN

(x.y

)

And mid-sides nodes shape functions are as follows

430011420101320110

411001311010211100

LLN,LLN,LLN

,LLN,LLN,LLN




 (x.y)

The following exact integration expression is valid

 
V

!cba

!d!c!b!a
dxdydzLLLL

V

dcba 6
3

4321


 . (x.y)

Literatura

[Hinton1979] Hinton E., Owen D.R.J., An Introduction to Finite Element

Computations, Pineridge, Swansea, 1979.

[Huang1999] Hou-Cheng Huang, Zheng-Hua Li and Asif S. Usmani,

Finite Element Analysis of Non-Newtonian Flow, Springer-Verlang,

London, 1999.

[Huebner1975] Huebner K.H., The Finite Element Method for

Engineers, Wiley, Toronto, 1975.

[Taylor1981] Taylor C., Hughes T.G., Finite Element Programming of

the Navier-Stokes Equations, Pineridge, Swansea, 1981.

[Zienkiewicz2000] Zienkiewicz O.C. ,Taylor R.L., The Finite Element

Method, Volume 1: The Basis (Fifth edition), Butterworth-Heinemann,

Oxford, 2000.

[Zie2000b] Zienkiewicz O.C. ,Taylor R.L., The Finite Element Method,

Volume 2: Solid Mechanics (Fifth edition), Butterworth-Heinemann,

Oxford, 2000.

[Zie2000c] Zienkiewicz O.C. ,Taylor R.L., The Finite Element Method,

Volume 3: Fluid Dynamics (Fifth edition), Butterworth-Heinemann,

Oxford, 2000.

O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its

Basis and Fundamentals Butterworth-Heinemann, Elsevier, 2014.

O.C. Zienkiewicz, R.L. Taylor, D.D. Fox, The Finite Element Method for

Solid and Structural Mechanics, Butterworth-Heinemann, Elsevier,

2014.

 O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu, The Finite Element

Method for Fluid Dynamics, Butterworth-Heinemann, Elsevier, 2014

[Rymarz1993] Rymarz Cz., Mechanics of Continuum Media (in Polish:

Mechanika ośrodków ciągłych), Wydawnictwo Naukowe PWN,

Warsaw, 1993.

