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X.4. Overview of the finite element method 

 

There is an extensive literature on finite elements, both for theory and 

applications. Popular books include those by Huebner [Hue1975] (a definitive 
work from an engineering perspective), Hinton and Owen [Hin1979], 

Zienkiewicz and Taylor [Zie2000a, Zie2000b, Zie2000c]. 

In this chapter, we give a sketch of the finite element procedures. This 
sketch introduces important concepts of local approximation functions (linear 

and quadratic), the Galerkin method, treatment of boundary conditions, and 

assembly and solution of global matrices. 
 The governing equations of given problem must first be discrtetised 

spatially to obtain the finite element equations. The conventional Galerkin 

weighted residual technique discussed in previous section/chapter is the most 

powerful and general method available to achieve finite element spatial 
discretisation for any set of differential equations. 

 



 

X.5. Local approximations  

 

In the finite element method, the solution u  of a PDE is approximated by low-

order polynomials on local elements. The local elements constitute the mesh; 

typical elements used are triangles and quadrilaterals in 2D, and tetrahedra and 

hexahedra in 3D.  
 



 
Figure 3.1: 2D triangular mesh. 

 

To give a simple example, consider a triangular mesh in 2D (Figure 3.1).  



We concentrate on the single triangle with corner nodes  k,j,i , and let the 

values of u  at the nodes be  kji u,u,u . We approximate u  within the local 

element by  

 

        Tkjikji u,u,uy,xN,y,xN,y,xNu   (x.y) 

 

where       y,xN,y,xN,y,xN kji  are interpolation functions. In the simplest 

case, these are linear polynomials such that  

 

  lpppl y,xN   (x.y) 

 

where lp  is the Kronecker symbol.  

  



 
For example, if the local element is the triangle with nodes at 

     110100 ,,,,, , the three linear interpolation functions are  

 

xN 11 , yxN 2 , yN 3  (x.y) 

 

and, given nodal values  kji u,u,u , the linear approximation to u  in the element 

is  
 

    kji yuuyxuxu  1 . (x.y) 

 

  



 
We can use (for example) the following element types: 

 

 

 
 

3-node triangle, linear approximation 

 

 
 

6-node triangle, quadratic 

approximation 

 

 
 

4-node quadrilateral, bi-linear 

approximation 

 

 
 

8-node quadrilateral, bi-quadratic 

approximation (serendipity element) 

  



 
 

4-node tetrahedron, linear 

approximation 

 
 

10-node tetrahedron, quadratic 

approximation 

 

 
 

8-node hexahedron, tri-linear 

approximation 

 

 
 

20-node hexahedron, tri-quadratic 

approximation (serendipity element) 

 
Figures X. Examples of finite element. 



 

X.6. Calculation of the nodal values 

 

X.5.1. Solution of steady problems 

 
The nodal values are pointwise approximations to the solution of a system of 

PDEs  

 

  fuL   (x.y) 

 

defined within a domain  and with boundary conditions specified at the 

boundary of . The boundary conditions typically specify and/or its derivatives. 

If u  is specified on the boundary, it is known as a Dirichlet boundary condition. 

A natural boundary condition specifies the value of terms arising from 

integration by parts, such as the flux. The PDE system might be a well-specified 

problem in its own right, or it might result from an algorithm applied to a more 

complex problem. Domain  can be in 2 or 3 dimensions, whilst both L and u  



can have multiple components. In the above, f  represents a forcing term for 

the PDEs, and  uL  typically includes derivatives of u  up to second order.  

 We represent the solution  xu  of the PDE system as follows:  

 

    xSuxu ii  (x.y) 

 

The PDE will be satisfied in the weak sense provided  

 

    


 0dVfuLxTj , eN,...,j 1  (x.y) 

 

for a given set of test functions jT . If L  has multiple components, then T  has 

a corresponding number. In the Galerkin method as implemented in many 

codes, the shape functions iS  and the test functions jT  are identical. However, 

since the shape functions do not have second derivatives everywhere, we 



usually integrate some terms by parts prior to the substitution of the shape 

function representation for u . In the finite element method the shape function 

iS  for each node is continuous and identically zero outside the elements of 

which the node is a part. Within each of those elements, iS  is a low-order 

polynomial which takes the value one at node j and zero at all other nodes.  

To accomplish the integration by parts, we symbolically decompose the 

operator L  into first- and second-order operators  
 

21 LLL   (x.y) 

 

Here both 1L  and 2L  are first-order operators. 2L  may be vector or tensor 

valued, with possibly a reduction operation when the grad is applied. The weak 

form of the PDE thus gives  
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221

221
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where   is the boundary and n  is the unit outward normal. Using this 

integrated form of the PDE, it is now possible to approximate u  using the shape 

functions. This process is known as assembly, and the end result is a finite 

dimensional system over the eN nodes:  

 

i

N

j

jij ruK
e


1

, eN,...,i 1  (x.y) 

 



where  
 

    dVSSLdVSLSK ijjiij   
 

21  (x.y) 

 

and 
 

  


 fdVSdSuLSr iii 2n . (x.y) 

 

The matrix K  is called the stiffness or global matrix, and vector r  is called the 

load vector. 
  



X.6.2. Solution of time dependent problems 

 

X.6.2.1. First strategy 

 

Let us consider time-dependent PDE equation  
 

  fuL
t

u





 (x.y) 

 

defined within a domain  and with boundary conditions specified at the 

boundary of .  uL  typically includes derivatives of u  up to second order.  

The numerical strategies are based on discretizing governing equations 

first in time, to get a set of simpler partial differential equations, and then 

discretizing the time-discrete equations in space. There are two main 

discretizing in time schemes: backward Euler and CrankNicolson. 
  



 
The backward Euler method uses the algorithm 

 

  fuL
t

uu
n

nn 





1
1


 (x.y) 

 

which is equivalent to  

 

   fututLu nnn    11 . (x.y) 

 

In the heart of the algorithm, the equation (x.y) is assembled and solved at each 

timestep. 



The CrankNicolson approximation uses the algorithm: 

 

  fuuL
t

uu
nn

nn 





1
1

2

1


. (x.y) 

 

Next define nn uuu  1  and verify that u  satisfies 

 

    f tutLuL
t

u n 


 
2

. (x.y) 

 

The above equation is assembled and solved for u  at each timestep. 

 
  



Let us consider the backward Euler approximation with the finite element 
method 

 

   fututLu nnn    11 . (x.y) 

 

The PDE will be satisfied in the weak sense provided  

 

      


  011 dVfututLuxT nnnj  , eN,...,j 1  (x.y) 

 

for a given set of test functions jT . To accomplish the integration by parts, we 

symbolically decompose the operator L  into first- and second-order operators  

 

21 LLL   (x.y) 

 



The weak form of the PDE thus gives  
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 (x.y) 

 



The end result is a finite dimensional system over the eN nodes:  

 

i

N

j

jij ruK
e


1

, eN,...,i 1  (x.y) 

 

where  

 

    dVSSLdVSLSdVSSK ijjijiij   
 

21  (x.y) 

 

and 

 

   






 dVfuSdSuLSr ninii 12
n . (x.y) 

 

 



X.6.2.2. Second strategy 
 

Strategies for time-dependent problems presented in previous sections were 

based on discretizing governing equations first in time and then discretizing the 

time-discrete equations in space. 
 One can write finite element shape functions to include the time 

variable and thus incorporate it into the general finite element method procedure 

[Hua1999]. However, due to the conceptual simplicity of the time dimension 
simpler finite difference approximations presented in the previous section are 

generally favoured. Most schemes currently used are constructed in this way. 

We can also discretizing governing equations first in space.  



Let us consider time-dependent PDE equation  
 

  fuL
t

u





 (x.y) 

 

defined within a domain  and with boundary conditions specified at the 

boundary of .  uL  typically includes derivatives of u  up to second order.  

The main numerical strategies are based on discretizing governing 

equations first in time, to get a set of simpler partial differential equations, and 

then discretizing the time-discrete equations in space.  
The PDE will be satisfied in the weak sense provided  

 

   















0dVfuL

t

u
xTj , eN,...,j 1  (x.y) 

 

for a given set of test functions jT .  



To accomplish the integration by parts, we symbolically decompose the 

operator L  into first- and second-order operators 21 LLL  . Here both 1L  

and 2L  are first-order operators. The weak form of the PDE thus gives  
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The end result is a finite dimensional system over the eN nodes:  

i

N

j

jij

N

j

jij ruKuM
ee


 11

 , eN,...,i 1  (x.y) 

 
where  




 dVSSM jiij  (x.y) 

    dVSSLdVSLSK ijjiij   
 

21  (x.y) 

and 

 

  


 fdVSdSuLSr iii 2n . (x.y) 

 

The matrix M  is called the mass matrix. 

 



X.7. Assembly and sub-assembly  
 

Although the components of K  are written as integrals over the whole mesh, 

they are in fact zero everywhere except on elements containing both node i and 

node j. Nodes that have no element in common have a zero entry; hence K  is 
a sparse matrix. Assembly in FEM is carried out element by element. Each pair 

of nodes of the element generates a component to be added to K . These 

components are added into an element matrix, prior to being added into the 

global matrix. In this process, subsets of the global vectors required as data for 
assembly, including the coordinates, are selected and sorted into a standard 

nodal order for the element. This is referred to as the local level; the vectors are 

called local vectors. The integrals making up K  have to be evaluated, and this 

is done by Gauss quadrature. Standard interpolation formulae are used to 
calculate the quantities concerned at quadrature points, and weighted sums of 

these values are used to approximate the integral.  

 
 



X.8. Boundary conditions  
 

The finite element method distinguishes between essential and natural boundary 

conditions:  

a) essential (Dirichlet)  
 

  guG   (x.y) 

 
where the value of variable is prescribed; 

b) natural (Neumann) 

 

  suS 
 (x.y) 

 



As an introduction to these concepts, consider the weak form of the left-
hand side of Laplace's equation:  

 

 
 

 dS uSVd uSdV uS iii n
2  (x.y) 

 
The last term is an integral over the boundary of the normal derivative (or flux). 

This is called a natural boundary condition; the boundary integrands represent 

a physical quantity (for example, flux in a diffusion problem, or stress in a linear 

elasticity problem). The condition is implemented by substituting directly if the 
integrand is known, or by substituting an expression involving unknowns. 

Natural boundary conditions are specified at the time that the PDE problem is 

specified. On the other hand, an absolute specification ii cu   at some set of 

boundary nodes is called an essential boundary condition. This is enforced by 

including it in the set of equations, replacing the equation which had been 

formed by using iS  as a test function.  



To illustrate this point, suppose that node 3 is a boundary node with 

value Uu 3 . The third row of the matrix is independent of other nodal values 

and is given by  

 

    Uu,...,u,u,u,...,,,, N  32100100  (x.y) 

 

Incorporation of this boundary condition into the matrix system gives the new 

system  
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If the matrix K  is symmetric it is necessary to do a further elimination to regain 

symmetry:  
 







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
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 (x.y) 

 

To summarise the discussion so far, essential boundary conditions are 

implemented by modification of the global matrix and right-hand side (RHS) 
vector, whilst natural boundary conditions are often accounted for in the RHS 

vector alone. These concepts are so important, however, that we now provide a 

more detailed commentary.  



In the Galerkin procedure, a term such as ExpDm  (where mD  denotes 

partial differentiation with respect to mx , m could be i or j, and Exp  might or 

might not involve suffices, an unknown or another differentiation) is multiplied 

by a test function T  over the region   with boundary  . For all second-

order terms and some first-order terms, the integration is done by parts. This 

gives:  

 

  
 

 dS Expn TdV ExpTDdV ExpD T mmm . (x.y) 

 

The application of boundary conditions in the finite element method 

requires either that some information is used to replace the integrand resulting 
from second-order terms, when T  is non-zero there, or that for such test 

functions the whole equation is replaced by an essential condition. So when we 

implements such terms, we adds only the second integral into the equations - 

either to the sparse matrix or the right-hand side vector.  
 



The boundary integrals often have physical significance, and it is best to try to 
formulate the equations to take advantage of this. In fact, many second-order 

equations correspond to one of the following patterns:  

 rate of change of heat with time = div (flux),  

 change of momentum with time = div (stress). 

 

For steady equations the rates would be zero. The divergences are integrated by 
parts, and the boundary integrands will be the normal components of either the 

flux or the stress. On interior boundaries, integrals are generated on each side, 

and the net integrand is the difference.  
 

There are three possible specifications on any particular boundary.  

1. We can assert that the integrand (flux, stress, ...) is zero on an outside 
boundary or the integrand is continuous on an interior boundary.  

2. We can set the boundary integral, by including the appropriate value, which 

will be added to the left-hand side.  



3. We can specify a Dirichlet condition, in which case the equation, with its 
boundary integrals, will be overwritten.  

 

 



X.9. The solution stage 
 

The finite element solution is obtained by solving  

 






N

j

ijij ruK
1

, N,...,i 1  (x.y) 

 
where the right-hand side is made up of boundary integrals from natural 

boundary conditions, terms from essential boundary conditions and boundary 

integrals. The matrix system is invariably large and sparse, and often symmetric 

positive definite. To solve the matrix system we can use both direct and indirect.  
The above description illustrates concepts underlying the use of finite elements 

method.  

 
 



X.10. Shape functions in local coordinate system 
 

X.10.1. Basic two-dimensional C(0) rectangular elements 

 

 The shape functions for the four noded rectangular element in local 
coordinate system can be abbreviated to 

Ni i i  
1

4
1 1( )( )   

 
(x.y) 

where 

 

 

i 1 2 3 4 

 i  
-1 1 1 -1 

i  
-1 -1 1 1 

 
 



I  i  i  
1  -1 -1 

2 1 -1 

3 1 1 

4 -1 1 

 
 

The shape functions for the eight noded rectangular element can be summarised: 

for corner nodes 
 

Ni i i i i    
1

4
1 1 1( )( )( )       

 
(x.y) 

 

for midside nodes 0i   

 



Ni i  
1

2
1 12( )( )  

 
(x.y) 

 

for midside nodes 0i   

 

Ni i  
1

2
1 1 2( )( )  

 
(x.y) 

 

where 

 

 

i 1 2 3 4 5 6 7 8 

 i  
-1 0 1 1 1 0 -1 -1 

i  
-1 -1 -1 0 1 1 1 0 

 



 

i  i  i  
1 -1 -1 

2 0 -1 

3 1 -1 

4 1 0 

5 1 1 

6 0 1 

7 -1 1 

8 -1 0 

 
 

 



X.10.2. Isoparametric elements 
 

 We can generalise these elements by using the isoparametric 

representation. Consider an isoparametric formulation for an m-node element. 

We can express the geometry of such elements using the nodal coordinates x 
and y of element and the shape functions of element described above. Thus at 

any point within an element the Cartesian coordinates may be obtained from the 

expressions:  
 

x N xi

i

m

i( , ) ( , )   



1  

(x.y) 

and 

y N yi

i

m

i( , ) ( , )   



1  

(x.y) 

 

 



The Cartesian derivative of any function f defined over the element using the 
expression: 

 

f N fi

i

m

i( , ) ( , )   



1  

(x.y) 

 

may be obtained by the chain rule of differentiation 
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
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

f
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f

y
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where 



 









f N
fi

i

m

i



1  

(x.y) 

 
 









f N
fi

i

m
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


1  

(x.y) 

 

 

The terms 
 















x x y y  

(x.y) 

 

can be obtained using the following procedure. First we evaluate the matrix 
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which is termed the Jacobian matrix J. The inverse of the Jacobian is then 

evaluated 
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An element area of the element is given as 



 
dd dxdy Jdet  (x.y) 

 

 
For an isoparametric element we have 
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and 
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X.10.3. Numerical integration  
 

 We can adopt a numerical integration procedure to evaluate such 

integrals 

 

 
 



1

1

1

1

),(),( 



dd gdd g

 

(x.y) 

 
or 

 






























1

1

1

1

)1,(

),1(

),(











dg

dg

dg

 

(x.y) 



 
The r-point Gauss-Legendre integration rule have the form: 
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r  i  
wi  

1 0.00000 2.00000 

2 0.577530 

-0.577530 

1.00000 

1.00000 

3 0.00000 

0.774597 
-0.774597 

8/9 

5/9 
5/9 

4 0.861136 

-0.861136 

0.339981 
-0.339981 

0.347855 

0.347855 

0.652145 
0.652145 

 

Note that r-point rule can integrate exactly polynomial functions of degree 2r-

1 or less. This type of formulation enables us to use elements of the very general 
nature. 

 



 

X.11. Shape functions for triangular and tetrahedral element family  

 

 

X.11.1. Triangular element family 
 

The advantage of an arbitrary triangular shape in approximating to any 

boundary shape has been amply demonstrated in [Zie2000a]. The number of 
nodes in each member of the family is now such that a complete polynomial 

expansion, of the order needed for interelement compatibility, is ensured. This 

follows by comparison with the Pascal triangle in which we see the number of 
nodes coincides exactly with the number of polynomial terms required. Direct 

generation of shape functions will be preferred - and indeed will be shown to be 

particularly easy. Before proceeding further it is useful to define a special set of 

normalized coordinates for a triangle (area coordinates) [Zie200a]. 
While Cartesian directions parallel to the sides of a rectangle were a 

natural choice for that shape, in the triangle these are not convenient. A new set 



of coordinates, 321 L,L,L  for a triangle 1,2,3 is defined by the following linear 

relation between these and the Cartesian system: 
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To every set, 321 L,L,L  (which are not independent, but are related by the third 

equation), there corresponds a unique set of Cartesian coordinates.  

At point j: 









ji  ,

ji  ,
L iji

0

1
  for 321 ,,j  .  

 



Solving Eq. (xxxx) gives 
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in which 
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det  (x.y) 

 
and 

 

23321 yxyxa  , 321 yyb  , 231 xxc   (x.y) 

 

etc., with cyclic rotation of indices 1,2 and 3. 



 Relation between the Cartesian coordinates and area coordinates 

implicates that geometric place for iL , 321 ,,i  , are lines parallel to edge kj   

( kji  ) with 0iL . 

For the first element of the triangular series (linear element with three 
nodes placed at the vertices of triangle) the shape functions are simply the area 

coordinates. Thus 

 

ii LN   (x.y) 

 

for 321 ,,i  . This is obvious as each individually gives unity at one node i , zero 

at others, and varies linearly everywhere. 

 To derive shape functions for other elements a simple recurrence 

relation can be derived. However, it is very simple to write an arbitrary triangle 

of order m . We can use Silvester’s formula [Sil1969] to generate shape 

functions of order m : 

 



       321321 LPLPLPL,L,LN cbaabc   (x.y) 

 

where 
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and 

 

mcba  . (x.y) 

 

Shape functions are generated for all nodes, all sequences of  c,b,a  which 

satisfies mcba  . Indices c,b,a  in above equations denotes node position 

in triangle. The area coordinates of this node we can evaluate using  

 



m

c
L,

m

b
L,

m

a
L  321 . (x.y) 

 

Number of nodes of shape function (interpolating polynomial) of order m  is 

equal to    221  mm . For example, if we would like to evaluate shape 

functions of second order we have to calculate following expressions  

 

011101110002020200 N,N,N,N,N,N . (x.y) 

 

It is easy to verify that corner nodes shape functions are  
 

     121212 330022202011200  LLN,LLN,LLN  (x.y) 

 
And mid-sides nodes shape functions are as follows 

 

320113110121110 444 LLN,LLN,LLN  . (x.y) 



 
We can notice that in high-order shape functions in all cases three nodes of 

triangle element are placed at vertices of triangle and others on boundary or 

inside the triangle.  

When element matrices have to be evaluated it will follow that we are 
faced with integration of quantities defined in terms of area coordinates over the 

triangular region. It is useful to note in this context the following exact 

integration expression 
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In paper [Str1999] procedure automatically generating shape functions 

using symbolic computations has been presented. 
 

 



X.11.2. Tetrahedral element family 
 

Firstly, once again complete polynomials in three coordinates are achieved at 

each stage. Secondly, as faces are divided in a manner identical with that of the 

previous triangles, the same order of polynomial in two coordinates in the plane 
of the face is achieved and element compatibility ensured [Zie2000a]. 

Once again special coordinates 4321 L,L,L,L  for a tetrahedral 1,2,3,4 are 

introduced defined by: 
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Solving Eq. (xxxx) gives 
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For the first element of the triangular series (linear element with three 
nodes placed at the vertices of triangle) the shape functions are simply the area 

coordinates. Thus 

 

ii LN   (x.y) 

 

for 4321 ,,,i  . This is obvious as each individually gives unity at one node i , 

zero at others, and varies linearly everywhere. 

 We can use again Silvester’s formula [Sil1969] to generate shape 

functions of order m : 
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where 
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and 
 

mdcba  . (x.y) 

 

Shape functions are generated for all nodes, all sequences of  c,b,a  which 

satisfies mdcba  . Indices d,c,b,a  in above equations denotes node 

position in triangle. The area coordinates of this node we can evaluate using  
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Number of nodes of shape function (interpolating polynomial) of order m  is 

equal to     6321  mmm . For example, if we would like to evaluate 

shape functions of second order we have to calculate following expressions  
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(x.y) 

 

It is easy to verify that corner nodes shape functions are  
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And mid-sides nodes shape functions are as follows 
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The following exact integration expression is valid 
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