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WHAT IS MULTIPHYSICS? 

Multiphysics mul·ti·phys·ics [mul-ti-fiz-iks] noun 

1. Coupled physical phenomena in computer simulation. 
2. The study of multiple interacting physical properties. 

Understanding Physics 

We can describe what happens in the world using sets of physical laws. 

Since the 1940s, we have been using computers to understand physical 

phenomena. Originally, computing resources were scarce, so physical 

effects were observed in isolation. But, as we know, physics do not 

occur in isolation in the real world. 



IT'S A MULTIPHYSICS WORLD 

The real world is multiphysics in nature. 

Consider your cell phone. The antenna receives electromagnetic waves, 

the touch screen or buttons are mechanical and electrical components 

that interact with each other, the battery involves chemical reactions and 

the movement of ions and electrical current, and so on. A single device, 

but multiphysics. 

With a multiphysics capable simulation tool, you can correctly capture 

the important aspects of your design. 

 

  



 



MATERIALS MODELS 

The material models can be grouped by families, are as follows: 

A) Linear Elastic Material; 

B) Nonlinear Elastic Material Models:  Ramberg-Osgood, Power Law, 

Bilinear Elastic, Uniaxial Data, Hyperbolic Law, Hardin-Drnevich,  

Duncan-Chang, Duncan-Selig; 

C) Linear Viscoelastic Materials: Generalized Maxwell Model, Standard 

Linear Solid Model, Kelvin-Voigt Model; 

D) Hyperelastic Material Models: Neo-Hookean, St Venant-Kirchhoff, 

Mooney-Rivlin, Two Parameters, Mooney-Rivlin, Five Parameters, 

Mooney-Rivlin, Nine Parameters, Yeoh, Ogden,  Storakers, Varga, 

Arruda-Boyce, Arruda-Boyce, Blatz-Ko, Gao, Murnaghan;  



E) Elastoplastic Material Models: von Mises Criterion, Tresca Criterion, 

Mohr-Coulomb Criterion,  Drucker-Prager Criterion, Matsuoka-Nakai 

Criterion, Lade-Duncan Criterion, Hill Orthotropic Plasticity; 

F) Failure Criteria for Concrete, Rocks, and Other Brittle Material: 

Bresler-Pister Criterion, Willam-Warnke Criterion, Ottosen Criterion, 

Original Hoek-Brown Criterion, Generalized Hoek-Brown Criterion; 

G) Cam-Clay Material Model; 

H) Creep and Viscoplasticity: Norton Law (Power law), Norton-Bailey 

Law, Garofalo Law (Hyperbolic Sine Law), Navarro-Herring Creep 

(Diffusional Creep), Coble Creep (Diffusional Creep),  Weertman 

Creep (Dislocation Creep), Anand Viscoplastic Model; 

I) Piezoelectric Material; 

J) Rigid Domain Material Model. 

 



 



 



TENSOR NOTATION 

Some of the theory is developed using tensor notation. In most cases, explicit 

index notation is avoided. This means that the order of a tensor usually must be 

understood from the context. As an example, Hooke’s law for linear elasticity 

is usually written like 

𝐒 = 𝐂: 𝛆. 

Here, the stress tensor 𝐒 and the strain tensor 𝛆 are second order tensors, while 

the constitutive tensor 𝐂 is a fourth order tensor. The ‘:’ symbol means a 

contraction over two indices.  

  



In a notation where the indices are shown, the same equation would read 

𝑆𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 : ε𝑘𝑙, 

where the Einstein summation convention has been used as a shorthand for 

𝑆𝑖𝑗 = ∑ ∑ 𝐶𝑖𝑗𝑘𝑙ε𝑘𝑙
3
𝑙=1

3
𝑘=1 . 

In a few cases, non-orthonormal coordinate systems must be considered. It is 

then necessary to keep track of the covariance and contravariance properties of 

tensors. In such a case, Hooke’s law is written 

𝑆𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙: ε𝑘𝑙 

The stress and constitutive tensors have contravaraint components, while the 

strain tensor has covariant components. 



The elastic strain energy density is 

𝑊S =
1

2
𝛆el: (𝐂: 𝛆el + 𝟐𝐒0) =

1

2
𝛆el: (𝐒 + 𝟐𝐒0). 

This expression assumes that the initial stress contribution is constant during 

the straining of the material. 

  



Due to the symmetry, the elasticity tensor can be completely represented by a 

symmetric 6-by-6 matrix as: 

𝐂 =

[
 
 
 
 
 
𝐷11 𝐷12

𝐷21 𝐷22

𝐷13 𝐷14

𝐷23 𝐷24

𝐷15 𝐷16

𝐷25 𝐷26

𝐷31 𝐷32

𝐷41 𝐷42

𝐷33 𝐷34

𝐷43 𝐷44

𝐷35 𝐷36

𝐷45 𝐷46

𝐷51 𝐷52

𝐷61 𝐷62

𝐷53 𝐷54

𝐷63 𝐷64

𝐷55 𝐷56

𝐷65 𝐷66]
 
 
 
 
 

 

=

[
 
 
 
 
 
C1111 C1122

C1122 C2222
C1133 C1112

C2233 C2212
C1123 C1113

C2223 C2213

C1133 C2233

C1112 C2212
C3333 C3312

C3312 C1212
C3323 C3313

C1223 C1213

C1123 C2223

C1113 C2213
C3323 C1223

C3313 C1213
C2323 C2313

C2313 C1313]
 
 
 
 
 

 . 



In the case of  the isotropic material and elastic moduli the elasticity matrix 

becomes 

𝐂 =
𝐸

(1+𝜈)(1−2𝜈)

[
 
 
 
 
 
 
 
1 − 𝜈 𝜈

𝜈 1 − 𝜈
𝜈 0
𝜈 0

0 0
0 0

𝜈 𝜈
0 0

1 − 𝜈 0

0
1−2𝜈

2

0 0
0 0

0 0
0 0

0 0
0 0

1−2𝜈

2
0

0
1−2𝜈

2 ]
 
 
 
 
 
 
 

. 

 

  



Different pairs of elastic moduli can be used, and as long as two moduli are 

defined, the others can be computed according to Table 1. 

According to Table 1, the elasticity matrix for isotropic materials can be written 

in terms of Lamé parameters λ and μ, as follows: 

𝐂 =

[
 
 
 
 
 
𝜆 + 2𝜇 𝜆

𝜆 𝜆 + 2𝜇
𝜆 0
𝜆 0

0 0
0 0

𝜆 𝜆
0 0

𝜆 + 2𝜇 0
0 𝜇

0 0
0 0

0 0
0 0

0 0
0 0

𝜇 0
0 𝜇]

 
 
 
 
 

. 

  



Stress-strain relations for linear elastic orthotropic materials 
 

An orthotropic material has three mutually perpendicular symmetry 

planes. This type of material has 9 independent material constants.  With 

basis vectors perpendicular to the symmetry plane, the elastic stiffness 

matrix has the form: 

 

𝐂 =

[
 
 
 
 
 
𝑐11 𝑐12

𝑐12 𝑐22

𝑐13 0
𝑐23 0

0 0
0 0

𝑐13 𝑐23

0 0
𝑐33 0
0 𝑐44

0 0
0 0

0 0
0 0

0 0
0 0

𝑐55 0
0 𝑐66]

 
 
 
 
 

 

A.F. Bower. Applied Mechanics of Solids. CRC Press, Boca Raton, FL, 2010. 
http://solidmechanics.org/Text/Chapter3_2/Chapter3_2.php 



The engineering constants are related to the components of the 

compliance tensor by 

𝑐11 = 𝐸1(1 − 𝜈23𝜈32)Γ, 𝑐22 = 𝐸2(1 − 𝜈13𝜈31)Γ, 𝑐33 = 𝐸3(1 −

𝜈12𝜈21)Γ, 

𝑐12 = 𝐸1(𝜈21 + 𝜈31𝜈23)Γ = 𝐸2(𝜈12 + 𝜈32𝜈13)Γ, 

𝑐13 = 𝐸1(𝜈31 + 𝜈21𝜈32)Γ = 𝐸3(𝜈13 + 𝜈12𝜈23)Γ, 

𝑐23 = 𝐸2(𝜈32 + 𝜈12𝜈31)Γ = 𝐸3(𝜈23 + 𝜈21𝜈13)Γ, 

𝑐44 = 𝜇23,  𝑐55 = 𝜇13, 𝑐66 = 𝜇12, 

Γ =
1

1−𝜈12𝜈21−𝜈23𝜈32−𝜈13𝜈31−2𝜈21𝜈32𝜈13
. 



Stress-strain relations for linear elastic Transversely Isotropic 

Material 

A special case of an orthotropic solid is one that contains a plane of 

isotropy (this implies that the solid can be rotated with respect to the 

loading direction about one axis without measurable effect on the 

solid’s response).  Choose e3 perpendicular to this symmetry 

plane.  Then, transverse isotropy requires that: c22=c11, c23=c13, 

c55=c44, c66=(c11-c12)/2, so that the stiffness matrix has the 

form                           

 

 



𝐂 =

[
 
 
 
 
 
𝑐11 𝑐12

𝑐12 𝑐11

𝑐13 0
𝑐13 0

0 0
0 0

𝑐13 𝑐13

0 0
𝑐33 0
0 𝑐44

0 0
0 0

0 0
0 0

0 0
0 0

𝑐44 0
0 (𝑐11 − 𝑐12)/2]

 
 
 
 
 

 

The engineering constants must satisfy 

 

 



The engineering constants and stiffnesses are related by 

 

  



Table 1. Expressions for elastic moduli. 

 



Physical Interpretation of elastic constants for isotropic solids 
  
It is important to have a feel for the physical significance of the two elastic 

constants E and ν.  

  
Young’s modulus E is the slope of the stress— strain curve in uniaxial 

tension.  It has dimensions of stress ( N/m2 ) and is usually large – for steel, 

E=210×109 N/m2. You can think of E as a measure of the stiffness of the solid. 
The larger the value of E, the stiffer the solid.  For a stable material, E>0. 

  

Poisson’s ratio ν  is the ratio of lateral to longitudinal strain in uniaxial tensile 
stress. It is dimensionless and typically ranges from 0.2—0.49, and is around 

0.3 for most metals.  For a stable material, −1<ν<0.5. It is a measure of the 

compressibility of the solid.  If ν=0.5, the solid is incompressible – its volume 

remains constant, no matter how it is deformed.  If ν=0, then stretching a 
specimen causes no lateral contraction.  Some bizarre materials have ν<0  -  if 

you stretch a round bar of such a material, the bar increases in diameter! 



  
Thermal expansion coefficient quantifies the change in volume of a material 

if it is heated in the absence of stress.  It has dimensions of (degrees Kelvin)-1 

and is usually very small.   

For steel, α≈6−10×10−6 K-1 
  

The bulk modulus quantifies the resistance of the solid to volume changes.  It 

has a large value (usually bigger than E). 
  

The shear modulus quantifies its resistance to volume preserving shear 

deformations.  Its value is usually somewhat smaller than E.   
 



 
  



POISSON’S RATIO 

 
Figure 1. A cube with sides of length L of an isotropic linearly elastic 

material subject to tension along the x axis, with a Poisson's ratio of 0.5. 

https://en.wikipedia.org/wiki/File:PoissonRatio.svg


The green cube is unstrained, the red is expanded in the x direction by 

∆𝐿 due to tension, and contracted in the y and z directions by ∆𝐿′ . 

For a cube stretched in the x-direction (see Figure 1) with a length 

increase of ∆𝐿 in the x direction, and a length decrease of ∆𝐿′ in the y 

and z directions, the infinitesimal diagonal strains are given by  

𝑑𝜀𝑥 =
𝑑𝑥

𝑥
, 𝑑𝜀𝑥 =

𝑑𝑦

𝑦
, 𝑑𝜀𝑧 =

𝑑𝑧

𝑧
. 

If Poisson's ratio is constant through deformation, integrating these 

expressions and using the definition of Poisson's ratio gives  

−𝜈 ∫
𝑑𝑥

𝑥
= ∫

𝑑𝑦

𝑦

𝐿+Δ𝐿′

𝐿

𝐿+Δ𝐿

𝐿
= ∫

𝑑𝑧

𝑧

𝐿+Δ𝐿′

𝐿
. 



Solving and exponentiating, the relationship between ∆𝐿 and ∆𝐿′ is then  

(1 +
Δ𝐿

𝐿
)

−𝜈

=1 +
Δ𝐿′

𝐿
. 

For very small values of ∆𝐿 and ∆𝐿′ , the first-order approximation 

yields:  

𝜈 ≈ −
Δ𝐿′

∆𝐿
. 

Without approximation we can define Poisson’s ratio as: 

𝜈 = −
𝑙𝑜𝑔(1+

Δ𝐿′

𝐿
)

𝑙𝑜𝑔(1+
Δ𝐿

𝐿
)
. 



Volumetric change 

The relative change of volume Δ𝑉 𝑉⁄  of a cube due to the stretch of the 

material can now be calculated. Using 𝑉 = 𝐿3 and  

𝑉 + Δ𝑉 = (𝐿 + Δ𝐿)(𝐿 + Δ𝐿′)2:  

Δ𝑉

𝑉
= (1 +

Δ𝐿

𝐿
)(1 +

Δ𝐿′

𝐿
)

2

− 1 

Using the above derived relationship between ∆𝐿 and ∆𝐿′ :  

Δ𝑉

𝑉
= (1 +

Δ𝐿

𝐿
)
1−2𝜈

− 1 

for very small values of ∆𝐿 and ∆𝐿′ , the first-order approximation 

yields:  



Δ𝑉

𝑉
= (1 − 2𝜈)

Δ𝐿

𝐿
. 

For isotropic materials we can use Lamé’s relation  

𝜈 ≈
1

2
−

𝐸

6𝐾
 

where 𝐾is bulk modulus and is 𝐸 elastic modulus (or Young's 

modulus).  

Note that isotropic materials must have a Poisson's ratio of  −1 < 𝜈 <
0.5. Typical isotropic engineering materials have a Poisson's ratio of 

0.2 < 𝜈 < 0.5. 

  

https://en.wikipedia.org/wiki/Bulk_modulus
https://en.wikipedia.org/wiki/Young%27s_modulus
https://en.wikipedia.org/wiki/Young%27s_modulus


Width change 

If a rod with diameter (or width, or thickness) d and length L is subject 

to tension so that its length will change by ΔL then its diameter d will 

change by:  

∆𝑑 = −𝑑 𝜈 
Δ𝐿

𝐿
. 

The above formula is true only in the case of small deformations; if 

deformations are large then the following (more precise) formula can be 

used:  

∆𝑑 = −𝑑 (1 − (1 +
Δ𝐿

𝐿
)

−𝜈

) .  

The value is negative because it decreases with increase of length  



 

 

Definition of PR 

The most common definition of the engineering Poisson’s ratio (PR) is 

based on the assumption of small deformation. PR is simply defined as 

a negative ratio of the transverse to longitudinal strains. More generally 

the Poisson’s ratio for the longitudinal direction l and the transverse 

direction t can be written [Woj2005] 

𝜈𝑙𝑡 = −
𝜀𝑡𝑡

𝜀𝑙𝑙
 ,                                                                 () 

where 𝜀𝑡𝑡 and 𝜀𝑙𝑙 are strains in transverse and longitudinal direction, 

respectively. 



In the case of non-homogeneous material, the homogenization technique 

is used. The effective value of the Poisson’s ratio is defined as a 

negative ratio of the average transverse to longitudinal strains:  

𝜈𝑒𝑓𝑓 = −
〈𝜀𝑡〉

〈𝜀𝑙〉
 ,                                                                 () 

where 〈𝜀𝑡〉 and 〈𝜀𝑙〉 are average strains in transverse and longitudinal 

direction, respectively. 

In the case of a large deformation, however, the expression describing 

effective PR might require more complex, nonlinear form. The 

logarithmic PR model is expressed by the following formulae: 

𝜈𝑒𝑓𝑓 = −
log (1+〈𝜀𝑡〉)

log (1+〈𝜀𝑙〉)
,                                                     () 

but other models could also be considered.     

 



 

 
 
 
 

 



Mathematical model 

The Navier's equation of motion with the linear constitutive relation 

between stresses and deformations is:  

𝜌
∂2𝐮

∂𝑡2 − ∇ ∙ 𝐒 = 𝐅V  (1) 

where: ρ is the density, u is the vector of displacements, 𝐒 is the stress 

tensor, 𝐅V is the volume force vector. 

  



The total stress 𝐒 in the Hooke’s law is then augmented by the 

viscoelastic stress 𝐒q and the external stress 𝐒ext  

𝐒 = 𝐒ad + 𝐂: 𝛆el 

𝐒ad = 𝐒0 + 𝐒ext + 𝐒q 

of the material models will compute a stress Many based on an elastic 

strain. The elastic strain tensor is obtained after removing any inelastic 

deformation contribution from the total deformation from the 

displacements. There are several possible inelastic strain contributions: 

initial, thermal, hygroscopic, plastic, creep and viscoplastic strains. 

  



The elastic strain tensor 𝛆el represents the total strain minus initial and 

inelastic strains  

𝛆el =  𝛆 − 𝛆inel 

𝛆 =
1

2
((∇𝐮)𝑇 + ∇𝐮). 

Initial and inelastic strains 𝛆inel = 𝛆0 + 𝛆th + 𝛆hs + 𝛆pl + 𝛆cr + 𝛆vp, 

where strains 𝛆0, 𝛆th, 𝛆hs, 𝛆pl, 𝛆cr are initial, thermal, hygroscopic, plastic, 

creep and viscoplastic strains, respectively. This additive decomposition 

of strains can however only be justified as long as the strains are small. 

In the case of large deformations, the different strain contributions may 

not even be commutative. 

 



The elastic strain tensor can in the same way be decomposed into 

volumetric and deviatoric components: 𝛆el =
1

3
𝛆vol𝐈 + 𝛆dev, with the 

volumetric elastic strain given by 𝛆vol = trace(𝛆el) and the deviatoric 

contribution by 𝛆dev = dev(𝛆el). 

  



A harmonic displacement is defined by equation as below: 

 
∂2𝐮

∂𝑡2 = −ω2𝐮 () 

where: ω is forcing frequency.  

The displacement vector has the complex form and is defined as: 

𝐮(𝐱) = 𝐮1(𝐱) + 𝑖𝐮2(𝐱) (x) 

and the harmonic displacement is a real part of complex form: 

𝐮(𝐱, 𝑡) = Re[𝐮(𝐱)e−𝑖𝜔𝑡] (x) 

 



According to aforementioned equations the harmonic equation of 

motion fulfills the formula: 

𝜌ω2𝐮 − ∇ ∙ 𝐒 = 𝐅e𝑖𝜙 . 

𝐒 = 𝐒ad + 𝐂: 𝛆el − (
trace(𝐂: 𝛆el)

3
+ 𝑝𝑤) 𝐈 

The trace of an n-by-n square matrix A is defined as the sum of the 

elements on the main diagonal (the diagonal from the upper left to the 

lower right): trace(𝐀) = ∑ Aii𝑖 . 

 

 



The Navier's equation of motion with the linear constitutive relation 

between stresses and deformations is:  

𝜌
∂2𝐮

∂𝑡2 − (𝜇∇𝟐𝐮 + (λ + 𝜇)∇∇ ∙ 𝐮) = 𝟎.  () 

A harmonic displacement is defined by an equation as below: 

 
∂2𝐮

∂𝑡2 = −ω2𝐮 () 

where: ω is forcing frequency. The displacement vector has the complex 

form and is defined as: 

𝐮(𝐱) = 𝐮1(𝐱) + 𝑖𝐮2(𝐱) () 

and the harmonic displacement is a real part of the complex form: 



𝐮(𝐱, 𝑡) = 𝑅𝑒[𝐮(𝐱)e−𝑖𝜔𝑡] (9) 

According to aforementioned equations the harmonic equation of 

motion of linear elastic material fulfills a formula: 

−𝜌𝜔2𝐮 − (𝜇∇𝟐𝐮 + (𝜆 + 𝜇)∇∇ ∙ 𝐮) = 𝟎 (10) 

where: µ, λ are Lamé constants. The harmonic equation may be viewed 

as the eigenvalue equation.  

 

  



In the case of viscoelastic material the harmonic equation of motion 

fulfills the formula: 

−𝜌ω2𝐮 − ∇ ∙ 𝐒 = 𝐅e𝑖𝜙 .                                                     (11) 

𝐒 = 𝐒ad + 𝐂: 𝛆el − (𝑡𝑟𝑎𝑐𝑒(𝐂: 𝛆el)/3 + 𝑝𝑤)𝐈                                  (12) 

The trace of an n-by-n square matrix A is defined as the sum of the 

elements on the main diagonal (the diagonal from the upper left to the 

lower right): 𝑡𝑟𝑎𝑐𝑒(𝐀) = ∑ 𝐴𝑖𝑖𝑖 . 

 

 

 



 

Plane Stress and Plane Strain 
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Plane Strain Equations 

 

 



 


