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Solving Time-Dependent Problems

To get the equation for a time-dependent PDE in COMSOL Multiphysics, add terms
containing time derivatives to the left-hand side of the stationary equation. The time
derivatives must appear linearly, and the Dirichlet conditions must be linear. A

time-dependent problem in the coefficient form reads

2
eagt—g+da%+V~(—cVu—om+y)+B»Vu+au=f in Q

n‘(cVu+au—y)+qu=g—hTu on dQ

hu=r on dQ



THE SCALAR COEFFICIENT FORM EQUATION

A single dependent variable © is an unknown function on the computational domain.
COMSOL Multiphysics determines it by solving the PDE problem that you specify. In
coefticient form, the PDE problem reads

au-‘rda&+V'(7CVU7QU+Y)+B‘VU+(1LL=f in Q
att
(9-1)
n-(cVu+otuf’y)+qu=g7th on dQ
hu=r on d&2

where
¢ Qs the computational domain—the union of all subdomains

¢ 0Q is the domain boundary

* 1 is the outward unit normal vector on dQ



The first equation in the list above is the PDE, which must be satisfied in €. The
second and third equations are the boundary conditions, which must hold on d€. The
second equation is a generalized Neuwmann boundary condition, whereas the third
equation is a Dirichiet boundary condition. This nomenclature and the second
cquation above deviate slightly from traditional usage in potential theory where a
Neumann condition usually refers to the case ¢ = 0. The generalized Neumann
condition is also called a mixed boundary condition or a Robin boundary condition.
In finite element terminology, Neumann boundary conditions are called narural
boundary conditions because they do not occur explicitly in the weak form of the PDE
problem. Dirichlet conditions are called essential boundary conditions because they

restrict the trial space. Dirichlet boundary conditions often represent constraints.



¢ The symbol V is the vector differential operator (gradient), defined as

V= (aixl’ %j

The space coordinates are denoted xq, ..., x,,, where n represents the number of
space dimensions.

* The symbol A stands for the Laplace operator



* The symbol A stands for the Laplace operator
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where B, ..., B, are the components of the vector B.



THE COEFFICIENT FORM EQUATION SYSTEM

With two independent variables © and ug, the stationary PDE problem in coefficient
form results in the following equation system:
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where u# = (4, t5). The mass term is defined as
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Similarly, the damping term is

%1 d ai"“l wd .. aitz
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However, if e, = 0, then d,, is often called the mass coetticient.



Solving Time-Dependent Problems

To get the equation for a time-dependent PDE in COMSOL Multiphysics, add terms
containing time derivatives to the left-hand side of the stationary equation. The time
derivatives must appear linearly, and the Dirichlet conditions must be linear. A

time-dependent problem in the coefficient form reads

ea—u+dag?+v-(7cVufocu+y)+B-Vu+au=f in Q
at?
n-(cVu+au—’y)+qu=g—hTu on JQ

hu=r on dQ



It u is a vector of dependent variables then the mass coefficient e, is a matrix. All
coefficients can depend on time. The name mass matrix or mass coefficient stems
from the fact that in many physics applications e, contains the mass density. The d,,
coefficient represents damping for wave-type equations. However, ife, = 0, then d,, is
often called the mass coefficient. The default settings are e, = 0 and d, = 1,
representing a time-dependent PDE such as the heat equation. Using e, = 1 and

d, = 0 represents an undamped wave equation.



The time-dependent problem in the general form is

2
eaai;%daghvr:F in 0
ot
T
—n»T‘=G+(-%) u on 02
0=R on dQ

The flux vector ' and the scalar coefficients F', G, and R can be functions of the spatial
coordinates, the solution &, and the space and time derivatives of w. The superscript
“T” in the Neumann boundary condition denotes the transpose. The variable p is the

Lagrange multiplier.



Time-Dependent Systems
For time-dependent systems of PDEs the d,, and e, coefficients are matrices. For

example, for the system
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(where cach element ¢;; can be an n-by-n matrix). Many interesting problems have a

singular d, matrix (with e, = 0), or a singular nonzero e, matrix. Such problems are



Solving Eigenvalue Problems

COMSOL Multiphysics handles scalar cigenvalue problems for all PDE forms. These
cigenvalue problems are related to time-dependent problems via the correspondence
d/dt ¢ —A, linking the time derivative to the cigenvalue A (with the default cigenvalue

name lambda). An eigenvalue problem in the coefficient form reads

{ (J\.—AO)Qeﬂu—(?\.—ho)dGu+V-pcVu—auH[}-Vu+au:f in Q

n-(cVu+ou)+qu = —th on dQ)

1 hu=r on d)
where Ag is the linearization point for the cigenvalue. Note that the source terms are
ignored if the solution form is coefficient form. If the general or weak solution forms
are used, the source terms are not ignored if they depend on the solution components.
If the coefficients depend on 1 or the cigenvalue A, COMSOL Multiphysics performs
a lincarization of the problem about the lincarization point & = ug, A = Ay. The
software also performs this lincarization for cigenvalue problems in the general and
weak forms, though in a slightly different way. See “The Lincar or Lincarized Model”
on page 386 in the COMSOL Multiphysics User’s Guide for information about

lincarization.




There are many interesting PDE problems to which this interpretation does not apply.
For instance, a time-harmonic PDE such as the Helmholtz equation represents a
time-dependent phenomenon transformed into the frequency domain.

For the Neumann boundary condition of the coefficient form

n-(cVu+ou-y)+qu =g—hTu

* g is the boundary absorption coefficient.

» g is the boundary source term.



Convection
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Interpreting PDE Coefficients

The COMSOL PDE formulations can model a variety of problems, but note that this
documentation uses coefficient names that fall within the realm of continuum
mechanics and mass transtfer. For the coefficient form:

* e, is the mass cocfficient.

o dgisadamping coefficient or a mass coefficient.

» cis the diffusion coefficient.

» o is the conservative flux convection coefficient.

» Bis the convection coefficient.

* a is the absorption coefficient.

s vis the conservarive flux souvce term.

» fis the source term.



TABLE 9-2: CLASSICAL PDES IN COMPACT AND STANDARD NOTATION

EQUATION COMPACT NOTATION STANDARD NOTATION (D)
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Recall the coefficient form system of equations

2
d uy duy .
& el o gy + V- (e Vup— o + 1) + By - Vug tapuy =f; inQ
n - (g, Vi + ey, =) + Qe = g ho on dQ

hppuy =1y on dQ

where k and [ range from 1 to N, and m ranges from 1 to M, where M <N . Lety be
the name of space coordinate number j. The notation in the following table uses the
summation convention; that is, there is an implicit sum over all pairs of equal indices.



Poisson’s Equation on the Unit Disk

A classic PDE with a well-known behavior is Poisson’s equation
{ V. (Vu)=f Q
u=0 aQ

on the unit disk € with f= 1. The exact solution is

1—I2— 2
ulx,y) = ‘“""‘1‘““!-,

which makes it possible to compare the COMSOL Multiphysics solution with the

values of the exact solution at the node points on the mesh.



Results

The plot below shows the error (the difference between the numeric solution in
COMSOL Multiphysics and the exact, analytic solution):

Surface: u-(1-x"2-y”2)/4 Height: u Max: 1.081e-6
i x10

0.2

=]

0.1 -0.5

-1.5

Min: -1.687e-6




Fundamentals of Acoustics

What is Acoustics?

Acoustics is the physics of sonnd. Sound is the sensation, as detected by the car, of very
small rapid changes in the air pressure above and below a static value. This static value
is atmospheric pressure (about 100,000 pascals), which varies slowly. Associated with
asound pressure wave is a flow of energy. Physically, sound in air is a longitudinal wave
where the wave motion is in the direction of the energy flow. The wave crests are the

pressure maxima, while the troughs represent the pressure minima.

Sound results when the air is disturbed by some source. An example is a vibrating

object, such as a speaker cone in a hi-fi system. It is possible to see the movement of a
bass speaker cone when it generates sound at a very low frequency. As the cone moves
forward, it compresses the air in front of it, causing an increase in air pressure. Then it
moves back past its resting position and causes a reduction in air pressurc. This process

continues, radiating a wave of alternating high and low pressure at the speed of sound.



Mathematical Models for Acoustic Analysis

Sound waves in a lossless medium are governed by the following equation for the

(differential) pressure p (with SI unit N/ 1112):

Here pg (kg/ma) refers to the density and ¢g (m/s) denotes the speed of sound. The
dipole source (N/ms) and the monopole source Q (l/sz) are both optional. The

combination py 052 is called the bulk modulus, commonly denoted § (N /mz).



A special case is a time-harmonic wave, for which the pressure varies with time as

imt
p(xt) = p(x)e
where w=2n f (rad/s) is the angular frequency, [ (Hz) as usual denoting the
frequency. Assuming the same harmonic ime-dependence for the source terms, the

wave equation for acoustic waves reduces to an inhomogencous Helmholtz equation:

1 03253
V. (_“(Vp_q)] — 5 = Q (3-1)
Po PoCs

With the source terms removed, you can also treat this equation as an eigenvalue PDE

to solve for eigenmodes and eigenfrequencies.



Typical boundary conditions are:
¢ Sound-hard boundaries (walls)
* Sound-soft boundaries

* Impedance boundary conditions

* Radiation boundary conditions

In lossy media, an additional term of first order in the time derivative needs to be

introduced to model attenuation of the sound waves:

2
1 dp dp 1
—5—5-dy= +V-|-=(Vp-q)) = @
poclot” Ot (Po )



TIME-HARMONIC ANALYSIS
The time-harmonic—or frequency-domain—formulation is based on the
inhomogencous Helmholtz equation given in Equation 3-1 on page 21 and repeated

here for convenience:

. 2
Vo (-Lvp-g)-2L - @
Po PpCs

With this formulation you can compute the frequency response using the parametric

solver to sweep over a frequency range using a harmonic load.

EIGENFREQUENCY ANALYSIS

In the eigenfrequency formulation the source terms are absent and you solve for the

cigenmodes and the eigenvalues or eigenfrequencies:

2

v (-2vp)+ 2L <0 (3-2)
Po 2
PoCs



EIGENFREQUENCY ANALYSIS
In the eigenfrequency formulation the source terms are absent and you solve for the

cigenmodes and the eigenvalues or eigenfrequencies:

2
v.[flv;;j AP g (3-2)
Po =
PoCs

THE ACOUSTICS APPLICATION MODE

The eigenvalue A introduced in this equation is related to the cigenfrequency, fi

through A = —i2xf.



Example—Reactive Muffler

Introduction

This model examines the sound-transmission properties of an idealized reactive
muffler with infinitely long inlet and outlet pipes (or a reflection-free source at the inlet
pipe and a reflection-free end of the outlet pipe) and one expansion chamber. One
measure of the transmission properties is the transmission-loss coefficient, Dy, which

is defined as

D, = 10 log( 1)

o = 10- log[ g7
W,/

where W is the ime-averaged incident sound power and W is the transmitted sound

power. This problem has a theoretical 1D solution that you can compare with the FEM

solution.



Model Definition

In the following figure, a plane sound wave enters the inlet pipe (left) and is reflected
and attenuated in the expansion chamber. The attenuated sound wave exits through

the outlet pipe (right).

The diameter of both the inlet pipe and the outlet pipe is d, and the corresponding
cross-sectional area is S7. The expansion chamber has a diameter D with a

corresponding cross-sectional area Ss.

Inlet pipe Expansion / Outlet pipe
Ar chamber D
— r [4

S e

. f

Symmetry line




To determine the transmission loss in the model, you must first calculate the incident
and transmitted time-averaged sound intensities and the corresponding sound power

values. The equation

gives the time-averaged sound intensities where p is equal to pg at the inlet and the
computed solution at the outlet.

Using the boundary integration tool, you can evaluate the incident and transmitted

sound powers, W, as:

W = I(I- 2nr)dr



According to Ref. 1, the 1D theoretical solution for the transmission loss to this

problem is

S; Sy 2
Dt] = 10]0gl:1+(2—s—2*2—'8—1/

. 2
-(sin(kL) )}
where £ is the wave number; S and Sg are the areas of the pipes and expansion

chamber; and L gives the length of the expansion chamber.

The model computes the pressure, p, for the fluid in the region defined by the above
geometry. This is a time-harmonic problem so you can use the Helmholtz equation

defined in the axisymmetric Acoustics application mode:
2
1 O
v. (fE—(Vp —q)) - =0
0 Po Cs

where w=2nf is the angular frequency, pg is the fluid density, and ¢, is the speed of

sound. The q term is a dipole source with the dimension of force per volume.



—=— 3D sim
—&— 1D model

Transmission loss [dB]
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Frequency [Hz]

Figure 3-1: Mt;fﬂer transmission loss yersus frequency: theoretical solution (squares) and
COMSOL Multiphysics solution (triangles).



Flurd Mechanics

This chapter explains how to use the Incompressible Navier-Stokes application
mode for the modeling and simulation of fluid mechanics and fluid statics. Note
that the engineering community often uses the term CFD, computational fluid
dynamics, to refer to the numerical simulation of fluids. This chapter concludes
with step-by-step instructions on how to model a common benchmark problem:

flow over a backward step in the absence of external forces.



The Navier-Stokes Application Mode

Fluid mechanics deals with studics of gases and liquids cither in motion (fl#id
dynamics) or at rest (fluid statics). When studying liquid flows, it is often safe to
assume that the material’s density is constant or almost constant. You then have an
incompressible fluid flow. Using the Incompressible Navier-Stokes application mode

you can solve transient and steady-state models of incompressible fluid dynamics.



PDE Formulation and Equations

COMSOL Multiphysics uses a generalized version of the Navier-Stokes equations to

allow for variable viscosity.

Starting with the momentum balance in terms of stresses, the generalized equations in

terms of transport properties and velocity gradients are

Jdu

T _
p5z —V-In(Vu+(Vw) )l +p(u-V)u+Vp = F (6-1)

V-u=20



The first equation is the momentum transport equations, and the second is the
equation of continuity for incompressible fluids. The following variables and
parameters appear in the equations:

* 1) is the dynamic viscosity

* pis the density

* u is the velocity field

* pis the pressure

* Fis a volume force ficld such as gravity



Boundary Conditions

The boundary conditions for the Incompressible Navier-Stokes application mode are
grouped into the following types:
* Wall
- No slip (default)
- Slip
- Sliding wall
- Moving/leaking wall
« Inlet
- Velocity (default)
- Pressure, no viscous stress
* Outlet
- Velocity
- Pressure
- Pressure, no viscous stress (default)
- No viscous stress

- Normal stress



¢ Symmetry boundary

- Symmetry (default)

- Axial symmetry (2D axisymmetry only)
* Open boundary

- Normal stress (default)

- No viscous stress
* Stress

- General stress (default)

- Normal stress

- Normal stress, normal flow



Example—Steady Incompressible
Flow

Introduction

This model examines the physics of plane, incompressible, and steady flow: flow over
a backward step in the absence of external forces. This is a common benchmark
problem in CFD. There is no known exact solution, but experimental data has been
published (sce Ref. 1) making it possible to check the accuracy of the FEM solution.
The model includes analyses using both regular triangular meshes and mapped meshes,

comparing the solutions for various mesh densities.



Model Definition

Fluid enters from the left side with a parabolic velocity profile, passes over a step, and
leaves through the right boundary (Figure 6-5 shows the model geometry).

Figure 6-5: The backstep geometry.



The model computes the fluid’s velocity components w = («, v) in the x and

y directions and its pressure p in the region defined by the geometry in the preceding

figure. The PDE model for this application uses the stationary incompressible
Navier-Stokes equations

—r]V2u+p(u‘V]u+Vp:F
V.u=0



* Dynamic viscosity, 1| = 1.79-107° Pa-s
* Density, p=1.23 kg/m3

* A force field, F, absent in this model

The first equation is the balance of momentum from Newton’s second law. The other
relationship is the equation of continuity, where zero on the right-hand side states that

the fluid is incompressible.

The shape of the flow pattern depends only on the Reynolds number.



In this model, vou choose boundary conditions so that the average velocity at the inlet
is Vipoan = 0.544 m/s. To obtain a corresponding parabolic velocity profile, set

(1, v) = (6V peans(1-5), 0), where s is a boundary parameterization variable that runs
from 0 to 1 along the boundary. The fluid is always stationary at the walls, so

(u, v)=(0, 0) is the appropriate boundary condition. At the exit boundary, assume a

constant static pressure p = 0.

For such a fluid flow you can expect a velocity field with a boundary layer of thickness
approximately equal to 1/./Re at the walls. To resolve this steep solution gradient you
need a few rows of elements across the layer. For a flow with a large Reynolds number,

clements in the interior of the channel can be much larger than those near the walls.



USING THE INCOMPRESSIBLE NAVIER-STOKES APPLICATION MODE
Start by setting up a model and solve this problem on a fixed isotropic mesh. The given

input data correspond to a Reynolds number of

_0.544-2-0.0052 -1.23

Re =
1.79- 10"

= 389

Even though you are working with a steady flow model, it needs initial conditions
because the incompressible Navier-Stokes equations are nonlinear. To achieve a

numerical solution, the nonlinear solver solves the equations iteratively.



The following plots show examples of the mesh cases:

Case 1: Homogencous structured mesh

Case 2: Homogencous unstructured mesh

Case 3: Structured mesh

Case 4: Unstructured mesh

BRRXE
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Figure 6-6: A streamline plot of the velocity field.
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Heat Transfer

his chapter covers heat transfer application modes. It starts with some
background on heat transfer. It then reviews specifics of the Conduction
application mode and then the Convection and Conduction application mode. It
concludes with COMSOL Multiphysics models of three heat-transfer examples
taken from a NAFEMS (National Agency for Finite Element Methods and

Standards) benchmark collection.



Heat Transfer Fundamentals

What Is Heat Transfer?

From the kitchen toaster to the latest high-performance microprocessor, heat is
ubiquitous and of great importance in the engineering world. To optimize thermal
performance and reduce costs, engineers and researchers are making use of finite
clement analysis. Because most material properties are temperature-dependent, the
cffects of heat enter many other disciplines and drive the requirement for multiphysics

modeling.

For instance, both the toaster and the microchip contain electrical conductors that
generate thermal energy as electric current passes through them. As these conductors
release thermal energy, system temperature increases as does that of the conductors. If
the electric conductivity is temperature dependent, it changes accordingly and, in turn,
affects the electric field in the conductor. Other examples of multiphysics couplings
that involve heat transfer are thermal stresses, thermal-fluid convection, and induction
heating.



Heat transfer is defined as the movement of energy due to a temperature ditference. It

1s characterized by the following three mechanisms:

¢ Conduction is heat transfer by diffusion in a stationary medium duc to a
temperature gradient. The medium can be a solid or a fluid.

* Convective heat transfer is when heat is transported by a fluid motion. (Engineers
sometimes uses convection to refer to heat transfer between either a hot surface and
a cold moving fluid or a cold surface and a hot moving fluid.)

* Radiation is heat transfer via clectromagnetic waves between two surfaces (A and
B) with different temperatures Ty and T'g, provided that Surface A is visible to an

infinitesimally small observer on Surface B.



The Heat Equation

The mathematical model for heat transter by conduction is the bear equation:

aT
pcpafv -(RVT) = @
Quickly review the variables and quantities in this equation:
¢ Tis the temperature.
* pis the density.
. C’p
o kis thermal conductivity.

is the heat capacity at constant pressure.

¢ @ isa beat source or a beat sink.

For a steady-state model, temperature does not change with time, and the first term

containing p and C vanishes.



If the thermal conductivity is anisotropic, £ becomes the thermal conductivity tensor:

xx Xz

xy

yx Yy “yz
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|
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Convection and Conduction application mode as:

e, aT

3¢ +pCpuV-T= V- (EVT)+Q

where u is the velocity field. This field can either be provided as a mathematical
expression of the independent variables or calculated by a coupling to the velocity field

from an application mode such as Incompressible Navier-Stokes.

For transport through conduction and convection, a heat flux vector can be
approximated by

q=—-kRVT+ pCPTu

where q is the heat flux vector. If the heat transfer is by conduction only, q is instead

determined by

q = -kVT



Note: Heat capacity here refers to the quantity that represents the amount of heat
required to change one unit of mass of a substance by one degree. It has units of
energy per mass per degree (J/(kg'K) in SI units). This quantity is also called specific

heat or specific heat capacity.




Boundary Condition Types

The available boundary conditions are:

BOUNDARY CONDITION

DESCRIPTION

n-(kVT) = qo+ h(Ty o~ T)+Copr o Toy — T

inf ™
n (kVT) = 0
T=T,
T=0

k
n - (0, VT)) = Z(Ty-Ty)

k
ny- (keVT,) = Z(Ty-Ty)

Heat flux

Insulation or symmetry

Prescribed temperature
Zero temperature

Thin thermally resistive
layer (pair boundaries only)




Examples of Heat Transfer Models

The following heat transfer benchmark examples show how to model heat transfer
using:

* Steady-state and transient analysis

» Temperature, heat flux, convective cooling, and radiation boundary conditions

» Thermal conductivity as a function of temperature



1D Steady-State Heat Transfer with Radiation

The first example shows a 1D steady-state thermal analysis including radiation to a

preseribed ambient temperature.

Model Definition

This 1D model has a domain of length 0.1 m. The left end is kept at 1000 K, and at

the right end there is radiation to 300 K. For the radiation, the model properties are:

* The emissivity, €, is 0.98.
* The Stefan-Boltzmann constant, G, is 5.67-1078 VV/(n'12~I{4).

In the domain, use the following material property:

* The thermal conductivity is 55.563 W /(m-K).



Results

The following plot shows the temperature as a function of position:

Line: Temperature [K]

oo —ou—

0 0.02 0.04 0.06 0.08 0.1
Figure 7-4: Temperature as a function of position.

The benchmark result for the right end is a temperature of 927.0 K. The COMSOL
Multiphysics model, using a default mesh with 15 elements, gives a temperature at the

end as 926.97 K, which is the exact benchmark value to four significant digits.



2D Steady-State Heat Transfer with Convection

This example shows a 2D steady-state thermal analysis including convection to a

prescribed external (ambient) temperature.

Model Definition

This model domain is 0.6 m-by-1.0 m. For the boundary conditions:
* The left boundary is insulated.
* The lower boundary is kept at 100 °C.

* The upper and right boundaries are convecting to 0 °C with a heat transfer
coefficient of 750 VV/(mz-"C).

In the domain use the following material property:

* The thermal conductivity is 52 W/ (m-°C).



Results

The following plot shows the temperature as a function of position:
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Figure 7-5: Temperature distribution vesulting from convection to a prescribed external
temperature.



The benchmark result for the target location (x = 0.6 mand y = 0.2 m)isa
temperature of 18.25 °C. The COMSOL Multiphysics model, using a default mesh
with 550 clements, gives a temperature of 18.28 °C. Successive uniform refinements
show temperatures of 18.26 °C and 18.25 °C, converging toward the benchmark

result.



2D Axisymmetric Transient Heat Transfer

This example shows an axisymmetric transient thermal analysis with a step change to
1000 °C at time 0.

Model Definition

This model domain is 0.3 m-by-0.4 m. For the boundary conditions, assume the

following;:

* The left boundary is the symmetry axis.

* The other boundaries have a temperature of 1000 °C. The entire domain is at 0 °C
at the start, which represents a step change in temperature at the boundaries.

In the domain use the following material properties:

¢ The density, p, is 7850 kg/m3
¢ The heat capacity is 460 ] /(kg-°C)

* The thermal conductivity is 52 W/(m-°C)



Results

The following plot shows the temperature as a function of position after 190 seconds:
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Figure 7-

6: Temperature distribution after 190 seconds.



The benchmark result for the target location (= 0.1 mand z = 0.3 m) is a temperature
0t'186.5 °C. The COMSOL Multiphysics model, using a default mesh with about 720

clements, gives a temperature of roughly 186.4 °C.

As an additional postprocessing step, map the axisymmetric solution to 3D using an
extrusion coupling variable to show the solution for the entire cvlinder (sce
Figure 7-7).
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Figure 7-7: Postprocessing of the temperature in the full 3D geometry.



Structural Mechanics

This chapter explains how to use the Structural Mechanics application modes to
simulate and analyze applications involving solid mechanics. It begins with a brief
theoretical backgrounder on structural mechanics, after which subsequent sections

give details of the application modes.



The Structural Mechanics Application
Modes

COMSOL Multiphysics includes four application modes for stress analysis and general
structural mechanics simulation:

¢ The Solid, Stress-Strain application mode (for 3D geometrics)

¢ The Plane Stress application mode (for 21D geometries)

¢ The Plane Strain application mode (for 2D geometrics)

* The Axial Symmetry Stress-Strain application mode (for 2D axisymmetric

geometries)

The last three cases are 2D simplifications of the full 3D equations, simplifications that

are valid under certain assumptions.



Strain-Displacement Relationship

It is possible to completely describe the strain conditions at a point with the
deformation components—(u, v, w) in 3D—and their derivatives. You can express the
shear strain in a tensor form, yy, £y,, £y, OF in an engincering form, Yoy, Yz, Yaz-
Following the small-displacement assumption, the normal strain components and the

shear strain components are given from the deformation as follows:

_du B Iﬂ du  dv)
&= oy foT YT {&)y c)x/]
v _ Yy 1/dv | owy
Ey= Iy Eya= g T 2(5*@/]
_ dw ~ Yer 170w dw)
&= 32 Exr™ g T Q(EJrEf

The symmetric strain tensor € consists of both normal and shear strain components:

x Exy Exz
Exy £y Eyz

>4 E_VZ E“



Stress-Strain Relationship

The stress in a material is described by the symmetric stress tensor

consisting of three normal stresses (0y, Gy, 6;) and six, or if symmetry is used, three

shear stresses (Tyy, Tyz, Tyz). The stress-strain relationship for lincar conditions reads:

o = De



where D is the 6x6 clasticity matrix, and the stress and strain components are described

in vector form with the six stress and strain components in column vectors defined as

X Ex

y Ey

o, e,

o= 32 e = |2
Tey Yay

Tyz Tyz

| Bz ] RE

Note: The following descriptions use the compact notation ¢ and &€, meaning cither

the stress/strain vector or tensor depending on the context.




The clasticity matrix D and the more basic matrix p! (the inverse of D, also known
as the flexibility or compliance matrix) are defined differently for isotropic,

orthotropic, and anisotropic material. For isotropic materials, the D! matrix looks like

1 v -v 0 0 0

v 1 —v 0 0 0

ploll-v-v1 0 0 0

Elo o 021+v) 0 0

000 0 2(1+v) 0
000 0 0 2(1+v)

where E is the modulus of elasticity (also known as Young’s modulus), and v is
Poisson’s ratio, which defines contraction in the perpendicular direction. Inverting

p1



B E
T (1+v)(1-2v)

v Y 0 0 0
1-v v 0 0 0
v 1-v 0 0 0
1-2v
0 0 5 0 0
1-2v
0 0 0 5 0
1-2v




EQUILIBRIUM EQUATION

The equilibrium equations expressed in the stresses for 3D are

7a£xiaixyiaixz_ F
dx dy dz ~ ¥
dx dy dz ¥
dJ,., f:}ryz oG 7

where F denotes the volume forces (body forces).
Using compact notation, you can write this relationship as
-V.a=F

where G is the stress tensor. Substituting the stress-strain and strain-displacement

relationships in the above equation results in Navier’s equation expressed in the
displacement.



The Plane Stress Application Mode

Use the Structural Mechanics Plane Stress application mode to analyze thin in-plane
loaded plates. This application mode solves for the global displacements (u, v) in the
xandy directions. In a state of plance stress the 6, Ty, and 1., components of the stress

tensor are assumed to be zero.

z 77

Loads and constraints in a plane stress analysis.



Loads in the x and y directions are allowed. The mode assumes that the loads are
constant throughout the thickness of the material but that thickness can vary in the x
and vy directions. The plane stress condition prevails in a thin flat plate in the xy-plane

loaded only in its own plane and without any z-direction restraint.



The Plane Strain Application Mode

The Plane Strain application mode solves for the global displacements (u, v) in the x
and y directions. In a state of planc strain, the &, £y, and &, components of the strain
tensor are assumed to be zero.

N
N

Z

Loads in a plane strain analysis.



Loads in the x and y directions are allowed. The loads are assumed to be constant
throughout the thickness of the material, but that thickness can vary in the x and

y directions. The plane strain condition prevails in geometries that extend much
farther in the z direction than in the x and y directions, or when the z-displacement is
in some way restricted. The 2D geometry in a plane strain model represents a cross
section that cuts a very long or infinite depth such that you can ignore any end effects.
An example is a long tunnel along the z-axis where it is sufficient to study a unit-depth
slice in the xy-plane. A plane strain model is sometimes also referred to as a unit-depth

model.



The Axial Symmetry, Stress-Strain
Application Mode

The Axial Symmetry, Stress-Strain application mode uses the cylindrical coordinates r,
@, and z. It solves the equations for the global displacement (u, w) in the 7 and

z directions. The displacement v in the @ direction together with the Trgs Toz> Yrg»
and Yz cOMponNents of the stresses and strains are assumed to be zero. In this mode,
loads are independent of @, and it allows them only in the  and z directions.

You can view the domain where the equations are solved as the intersection between
the original axisymmetric 3D solid and the half plane @ = 0, 72 0. Therefore it is
necessary to draw the geometry only in the half plane 7 2 0. Later on, recover the
original 3D solid by rotating the 2D geometry about the z-axis (see the figure below).



Loads in an axisymmetric stress-strain analysis. The modeling domain is the gray 2D
SECEion.



Displacement Formulation

We now wish to develop the reduced set of field equations solely in terms of the displacements.
This system is referred to as the displacement formulation and is most useful when combined
with displacement-only boundary conditions found in the Problem 2 statement. This develop-
ment is somewhat more straightforward than our previous discussion for the stress formulation.
For this case, we wish to eliminate the strains and stresses from the fundamental system
(5.1.5). This is easily accomplished by using the strain-displacement relations in Hooke’s law
to give

(T,’/' = Zl{k,k(jij + ‘ll(ll,” j + l{l" ,’) (541)

which can be expressed as six scalar equations



ou L v ()u ) o
yid
v ()\ 0z ! ox

(()u 0 \' ()u ) v
+ o + 2 -
dy

) (5.4.2)
du Lo ()1 ()l ow
ox dy Oz

Ho:
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Using these relations in the equilibrium equations gives the result

g+ (A4 g, g +Fi =0 (5.4.3)

which are the equilibrium equations in terms of the displacements and are referred to as
Navier's or Lameé’ s equations. This system can be expressed in vector form as

uVr A+ G+ V(Y )+ F =0 (5.4.4)



or written out in terms of the three scalar equations

2 \ d (0 dv  ow
;1V‘u+(/.+;l),(— ﬂJrngﬂ +F, =0
dx \Ox dy 0Oz

2 , d (0 o Ow
T vt R Sl e Ecdidl I (545)
Ay \ox  dy 0Oz :
» . d fOou v Ow
Ww+U+ Wttt +F:=0
dz\ox Jdy 0z

where the Laplacian is given by V> = (9% /0x?) + (07 /0y?) + (0 /dz%). Navier’s equations are
the desired formulation for the displacement problem, and the system represents three equa-
tions for the three unknown displacement components. Similar to the stress formulation, this
system is still difficult to solve, and additional mathematical techniques have been developed
to further simplify these equations for problem solution. Common methods normally employ
the use of displacement potential functions. It is shown in Chapter 13 that several such
schemes can be developed that allow the displacement vector to be expressed in terms of
particular potentials. These schemes generally simplify the problem by yielding uncoupled
governing equations in terms of the displacement potentials. This then allows several analyt-
ical methods to be employed to solve problems of interest. Several of these techniques are
discussed in later sections of the text.



General Field Equation System
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FIGURE 5-5 Schematic of elasticity field equations.




FREQUENCY
RESPONSE ANALYSIS

Frequency response analysis is a method used to compute structural response to steady-state
oscillatory excitation.  Examples of oscillatory excitation include rotating machinery,
unbalanced tires, and helicopter blades. In frequency response analysis the excitation is
explicitly defined in the frequency domain. All of the applied forces are known at each forcing
frequency.  Forces can be in the form of applied forces and/or enforced motions
(displacements, velocities, or accelerations).

Oscillatory loading is sinusoidal in nature. In its simplest case, this loading is defined as
having an amplitude at a specific frequency. The steady-state oscillatory response occurs at
the same frequency as the loading. The response may be shifted in time due to damping in the
system. The shift in response is called a phase shift because the peak loading and peak
response no longer occur at the same time. An example of phase shift is shown in Figure 5-1.
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in direct frequency response analysis, structural response is computed at discrete excitation
frequencies by solving a set of coupled matrix equations using complex aigebra. Begin with the
damped forced vibration equation of motion with harmonic excitation |

X} + B} + = [Plw)je™! (5-1)

The load in Eq. (5-1) is introduced as a complex vector, which is convenient for the
mathematical solution of the problem. From a physical point of view, the load can be real or
imaginary, or both. The same interpretation is used for response quantities.




For harmonic motion (which is the basis of a frequency response analysis), assume a
harmonic solution of the form:

i} = fulo)e! : (5-2)

where [u(w)} is a complex displacement vector. Taking the first and second derivatives of
Eq. (5-2), the following is obtained:

[x} = iofu(w)e™!
(5-3)

[} = -wulw)e™!




When the above expressions are substituted into Eq. (5-1), the following is obtained:
-0IMfu(w)le™ + iw|Blu(w)e® + [Klu(w)e™! = [Plw)le™ (5-4)
which after dividing by e®! simplifies to
[@M + iwB + K]u(w)] = [Plw)) (5-5)

The equation of motion is solved by inserting the forcing frequency « into the equation of
motion.  This expression represents a system of equations with complex coefficients if
damping is included or the applied loads have phase angles. The equations of motion at each
input frequency are then sclved in a manner similar to a statics problem using complex
arithmetic.



Navier’s equation of motion

The actual position of a displaced particle is @' = @ + w(x,t), and since its
original position @ is time independent, its actual velocity is v(z,t) = Ju(x.t) /Ot
and its acceleration w(x,t) = d%u(x,t)/0t?. Newton’s Second Law — mass
times acceleration equals force — applied to every material particle in the body
takes the form, dMw = f*dV. Dividing by dV and re-using the effective force
density for an isotropic homogeneous elastic material from the left hand side
of the equation of equilibrium (12-2), we arrive at Navier’s equation of motion
(1821),

62
PT:; = f+uViu+ A+ p)VV u. (14-1)

Here A, p, and p are as before are assumed to be material parameters that do
not depend on space and time. In the case that they depend on the spatial po-
sition @, as they do in Earth’s solid mantle, Navier’s equation of motion takes a
somewhat different form (see problem 14.1). This equation of motion reduces by
construction to Navier’s equilibrium equation for a time-independent displace-
ment. As in elastostatics, the displacement field and the stress vector must be
continuous across material interfaces.



It must be emphasized that Navier’s equation of motion is only valid in the limit
of small and smooth displacement fields. If the displacement gradients are large,
non-linear terms will first of all appear in the strain tensor (10-44), but there will
also arise non-linear terms from the derivatives of the stress tensor in the effective
force, as demonstrated by eq. (12-3). In chapter 15 we shall derive the correct
equations of motion for continuous matter (in the Euler representation) with all
such terms included.



Harmonic analysis

A general mathematical theorem due to Fourier tells us that any time-dependent
function may be resolved in a superposition of harmonic or monochromatic com-
ponents, each oscillating with a single frequency. For linear differential equations
— ordinary or partial — with time-independent coefficients this is particularly ad-
vantageous because it reduces the time-dependent problem to a time-independent
one (for each frequency).

A real harmonic displacement field with circular frequency w and period 27 fw
satisfies the equation,

u

>z = —wlu . (14-9)



The most general solution is a linear superposition of two time-independent stand-
ing wave fields wy(x) and us (@),

w(x,t) = ui(x) coswt + ua(x) sinwt . (14-10)

Instead of working with two real fields it is often most convenient to collect them
in a single complex time-independent standing-wave field,

u(x) = uq(x) + iua(x) . (14-11)
The harmonic displacement field then becomes the real part of a complex field,
u(x.t) = Re [u(x) e™™"] . (14-12)
The displacement velocity is correspondingly given by the imaginary part,
oulx. t .
% =wIm|u(z)e ] | (14-13)
at

as may easily be verified.



Since the wave equation (14-2) is linear in u, it is also satisfied by the velocity
field du/dt and thus by both the real and imaginary part of the complex field
w(x)e ™! j.e by the whole complex field itself. Inserting this field into the
wave equation we obtain a single time-independent equation for the complex
standing-wave field u(x),

—ptu=pViu+ AN+ p)VV - (14-14)

It may be viewed as an eigenvalue equation for the operator ;1.6,-:,-V2+()\ +10)ViV;
with eigenfunction w(z) and —pw? as eigenvalue. It may be shown that w? is
always real and positive (problem 14.4). In a finite body, the boundary conditions
only allow solutions for a discrete set of eigenfrequencies, whereas in an infinite
medium the eigenfrequencies normally form a continuum.

The harmonic analysis may immediately be extended to Navier’s equation of
motion with a time-dependent body force field f(w,t). This will only add the
complex harmonic amplitude f(x) of the force field to the right hand side of
(14-14).



The solution of the equation of motion for natural frequencies and normal modes requires a
special reduced form of the equation of motion. If there is no damping and no applied loading,
the equation of motion in matrix form reduces to

M (i} + (K] fu} = (3-1)

where [M] = mass matrix

=
I

stiffness matrix




This is the equation of motion for undamped free vibration. To solve Egq. (3-1) assume a
harmonic solution of the form

[u] = [p]sin wt (3-2) |

where [¢| = the eigenvector or mode shape

@ = is the circular natural frequency

Aside from this harmonic form being the key to the numerical solution of the problem, this form
also has a physical importance. The harmonic form of the solution means that all the degrees
of freedom of the vibrating structure move in a synchronous manner. The structural 3
configuration does not change its basic shape during motion; only its amplitude changes.



If differentiation of the assumed harmonic solution is performed and substituted into the
equation of motion, the following is obtained:

-0?[M]|¢}sin ot + [K|[¢]sin ot = 0 (3-3)

which after simplifying becomes

(K] - w?M])fg) = 0 (3-4)



This equation is called the eigenequation, which is a set of homogeneous algebraic equations
for the components of the eigenvector and forms the basis for the eigenvalue problem. An,
eigenvalue problem is a specific equation form that has many applications in linear matrix
algebra. The basic form of an eigenvalue problem is

[A-ax=0 (3-5)
where A = square matrix
A = eigenvalues
1 = identity matrix
x = eigenvector



There are two possible solution forms for Eq. (3-4):

1. If det ([K] - wz[M]) = 0, the only possible solution is

¢} =0 (3-6).

@

This is the trivial solution, which does not provide any valuable information from a

physical point of view, since it represents the case of no motion. (“det” denotes the
determinant of a matrix.)



2. If det ([K] — @?[M]) = 0, then a non-trivial solution ({¢] = 0)is obtained for
(K] = w*Ml)ig] = 0 (3-7)

From a structural engineering point of view, the general mathematical eigenvalue
problem reduces to one of solving the equation of the form

det ([K] — w?[M]) = 0 (3-8)
or
det ([K] — A[M]) = 0 (3-9)

where 4 = w?



The determinant is zero only at a set of discrete eigenvalues A, or w;?. There is an eigenvector
§¢ i} which satisfies Eq. (3-7) and corresponds to each eigenvalue. Therefore, Eq. (3-7) can be
rewritten as

[K—oMlp]=0 i=1, 2 3. (3-10)

Each eigenvalue and eigenvector define a free vibration mode of the structure.  The i-th
eigenvalue 4, is related to the i-th natural frequency as follows:

(3-11)

gle

where f, = i-th natural frequency

@; = ﬁl_
The number of eigenvalues and eigenvectors is equal to the number of degrees of freedom that
have mass or the number of dynamic degrees of freedom.




There are a number of characteristics of natural frequencies and mode shapes that make them
useful in various dynamic analyses. First, when a linear elastic structure is vibrating in free or
forced vibration, its deflected shape at any given time is a linear combination of all of its normal

modes

W = >le) &, (3-12)

where {z] = vector of physical dispfacements

i-th mode shape

=S
I

i-th modal displacement

gy
i



