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In matrix form, Hooke's law for isotropic materials can be written as
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where J; = 281}- is the engineering shear strain. The inverse relation may be written as
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§5.5.2. Stress-To-Strain Relations

To get stresses if the strains are given, the most expedient method is to invert the mafrix equation
(5.16). This gives
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Here £ is an “effective” modulus modified by Poisson’s ratio:
- E
E= B (5.18)
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Material

Isotropic upper limit [1]
Rubber [6]

Indium [11]

Gold [4]

Lead [4]

Copper [7]
Aluminum [4]
Copper [4]
Polystyrene [6]
Brass [1]

Ice [8]

Polystyrene foam [6]
Stainless Steel [7]
Steel [1]

Tungsten [4]
Tungsten

Fused quartz [9]
Boron [12]
Beryllium [4]
Re-entrant foam [10]
Isotropic lower limit [1]

Poisson's ratio
0.5
0.48--05
0.45
0.42
0.44
0.37
0.34
0.35
0.34
0.33
0.33
0.3
0.30
0.29
0.30
0.28
0.17
0.08
0.03
-0.7
-1
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Plane Stress and Plane Strain




The two-dimensional element is extremely important for:

(1) Plane stress analysis, which includes problems such
as plates with holes, fillets, or other changes in
geometry that are loaded in their plane resulting in local
stress concentrations.




(2) Plane strain analysis, which includes problems such
as a long underground box culvert subjected to a
uniform load acting constantly over its length or a long
cylindrical control rod subjected to a load that remains
constant over the rod length (or depth).




Plane Stress

Plane stress is defined to be a state of stress in which the
normal stress and the shear stresses directed
perpendicular to the plane are assumed to be zero.

That is, the normal stress o, and the shear stresses 7,, and 7,
are assumed to be zero.

Generally, members that are thin (those with a small z
dimension compared to the in-plane x and y dimensions) and
whose loads act only in the x-y plane can be considered to be
under plane stress.



Plane Strain

Plane strain is defined to be a state of strain in which the
strain normal to the x-y plane &, and the shear strains y,,
and y,, are assumed to be zero.

The assumptions of plane strain are realistic for long bodies
(say, in the z direction) with constant cross-sectional area
subjected to loads that act only in the x and/or y directions and
do not vary in the z direction.




Two-Dimensional State of Stress and Strain

For plane stress, the stresses o, 7,,, and 7, are assumed to
be zero. The stress-strain relationship is:
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is called the stress-strain matrix (or the constitutive matrix),
E is the modulus of elasticity, and vis Poisson’s ratio.




Two-Dimensional State of Stress and Strain

For plane strain, the strains ¢, 7, and y,, are assumed to be
zero. The stress-strain relationship is:
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is called the stress-strain matrix (or the constitutive matrix),
E is the modulus of elasticity, and vis Poisson’s ratio.




The limits of Poisson’s ratio for isotropic solids possess fundamental signifi-
cance. Shape is preserved at the lower limit of v = —1 (applicable for both 3D and
2D). Volume is preserved at the upper limit v = 1/2 (for 3D) while area is preserved
at the upper limit of v = 1 (for 2D). It is now of interest, though not in a practical
sense, to present the bounds of Poisson’s ratio under 1D, 2D and 3D analyses as

(3.2.17)
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whereby d = 1, 2, 3 refer to the number of dimensions. Of course the so-called
“bound” for ¢ = | is not a bound but this has been included for the sake of
completeness. Alternatively, the bounds for 2D and 3D can be combined to give

d=1

0:
l<v< b d=23 (3.2.18)



In addition to the Poisson’s ratio bounds based on 3D analysis, it is possible to
obtain the Poisson’s ratio bounds for 2D. The upper bound of Poisson’s ratio for 2D
case can be performed either on the basis of plane strain or plane stress. In addition
to 6 = —p: (i=j) and o = 0: (i # ) for hydrostatic pressure, the plane strain
condition requires that ¢33 = 0. Of course the plane strain condition also implies
¢35 = e3; = 0 but these have no effect on our calculation. From Hooke’s Law in 2D,

en=enx- 1). (3.2.13)
E" '
Since ey = e < 0 due to the hydrostatic pressure and £ > 0, we have v — 1 <0
or

v (3.2.14)



As before, the imposition of e¢;; = ¢2> < 0 arising from hydrostatic pressure and
E = 0 leads to Eq. (3.2.14). Whether by plane strain (¢33 = 0) or by plane stress
(53 = 0), the strain energy for 2D analysis is common

P’
U 'XE“ —v) (3.2.16)

because G3ze33 = 0 for both cases under hydrostatic pressure. On the basis of U 2 0
and E = 0, Eq. (3.2.14) is recovered for 2D analysis. Practically, the assumption of
plane strain is more plausible since it is not possible to impose plane stress con-
dition under hydrostatic pressure. The lower limit for the Poisson’s ratio in 2D
analysis is similar to that of 3D, because the condition of simple shear has only one
stress component @,z = 7 regardless of 3D or 2D analyses.



Plane Strain Equations




