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NEGATIVE POISSON’S RATIO 

 
Materials with negative Poisson’s ratio (NPR), at present, often referred to as auxetics 

[Evans, 1991], have been known for years. The key to this auxetic behavior is the negative 

Poisson’s ratio [Love, 1892]. It is well known that the range of the Poisson's ratio for the 

3D isotropic material is from -1 to 0.5, while for 2D structures this range is from -1 to 1. 

 

In the early 1900s, a German physicist Woldemar Voigt [1928] was the first who reported 

this property and his work suggested that the crystals somehow become thicker laterally 
when stretched longitudinally nevertheless it was ignored for decades.  
 

Typically, Poisson’s ratio of isotropic materials is positive, what means that common 

materials shrink transversely when stretched. An auxetic material behaves differently, i.e. 
if it is stretched in one direction, it expands along (at least one of) the transverse directions.  

 

Poisson’s ratio is within the range )1(11  d . 3D isotropic systems can exhibit 

Poisson’s ratios within the range 5.01   . For anisotropic materials Poisson’s 

ratio can have any positive or negative values in certain directions.   
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EFFECTIVE POISSON RATIO 

 

Effective Poisson’s ratio as 

the negative ratio of the an 

average transverse to 

average longitudinal strain 

allongitudin

transverse
eff




  .  

Effective Young’s 

modulus as the ratio of an 

average longitudinal stress 

to average longitudinal 

strain 

allongitudin

allongitudin

effE



 .  
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AUXETICS 
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LENGTH SCALE OF AUXETICS 

 

 
Source: Joseph N. Grima, Auxetic Metamaterials, 2010, www.auxetic.info 
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3D PRINTING – MANUFACTURING 
 

  

 

 Stefan Hengsbach,  

and Andrés Díaz 

Lantada,  

Direct laser writing of 

auxetic structures: 

Present capabilities 

and challenges,  

Smart Mater. Struct. 

23 085033 2014 

https://www.researchgate.net/publication/263775326_Direct_laser_writing_of_auxetic_structures_Present_capabilities_and_challenges?_sg=doy0vwC0t8_rtByk2LNDWdOzGPdBKbUwA4hDVO9fGto8A5jyJcxCkgGJs-obiSCtUn2AcVB1BPhZdhUIVHiN2enN0mHTkdPhDQ
https://www.researchgate.net/publication/263775326_Direct_laser_writing_of_auxetic_structures_Present_capabilities_and_challenges?_sg=doy0vwC0t8_rtByk2LNDWdOzGPdBKbUwA4hDVO9fGto8A5jyJcxCkgGJs-obiSCtUn2AcVB1BPhZdhUIVHiN2enN0mHTkdPhDQ
https://www.researchgate.net/publication/263775326_Direct_laser_writing_of_auxetic_structures_Present_capabilities_and_challenges?_sg=doy0vwC0t8_rtByk2LNDWdOzGPdBKbUwA4hDVO9fGto8A5jyJcxCkgGJs-obiSCtUn2AcVB1BPhZdhUIVHiN2enN0mHTkdPhDQ
https://www.researchgate.net/publication/263775326_Direct_laser_writing_of_auxetic_structures_Present_capabilities_and_challenges?_sg=doy0vwC0t8_rtByk2LNDWdOzGPdBKbUwA4hDVO9fGto8A5jyJcxCkgGJs-obiSCtUn2AcVB1BPhZdhUIVHiN2enN0mHTkdPhDQ
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NANOSCULPTURE 

 

 
Source: https://www.jontyhurwitz.com/portfolio/nano/ 
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Source: https://www.jontyhurwitz.com/portfolio/nano/ 
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HONEYCOMB MICROSTRUCTURE 
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AUXETICS STRUCTURES 

 
Auxetic property occurs due to their particular internal structure and the 

way this deforms when the sample is uniaxially loaded.  

 

Auxetics can be:  

single molecules,  

crystals, or  

a particular structure of 

macroscopic matter:  
 re-entrant structures,  

 chiral structures,  

 rotating rigid/semi-rigid units,  

 angle-ply laminates,  

 hard molecules,  

 micro porous polymers, and liquid 

crystalline polymer etc.  

 

 

 
Davood Mousanezhad, Babak Haghpanah, Ranajay Ghosh, 

Abdel Magid Hamouda, Hamid Nayeb-Hashemi, Ashkan 

Vaziri,  

Elastic properties of chiral, anti-chiral, and hierarchical 

honeycombs: A simple energy-based approach,  

Theoretical and Applied Mechanics Letters 2016, 6, 2, 81-96. 
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2D RE-ENTRANT STRUCTURES - EXAMPLES 
 

There are different re-entrant structures introduced.  

 

 

Based on their shape, they 

were named: 

(a) lozenge grids,  

(b) sinusoidal ligaments,  

(c) square grids,  

(d) double arrowhead, and  

(e) structurally hexagonal 

re-entrant honeycomb. 

 

 
Liu Y and Hu H, A review on auxetic structures and polymeric materials. Scientific 

Research and Essays, 2010, Vol. 5 (10), pp.1052-1063. 
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AUXETIC MATERIALS - STAR SHAPED UNITS 

 

In 2005 Grima and co-authors presented a class of two-dimensional periodic 

structures build of star-shaped units which are connected together to form 

two-dimensional periodic structures which can be described as “connected 

stars” (STAR-4 or -6 systems). 

  

 
 

From: J N. Grima, R. Gatt, A. Alderson and K.E. Evans, On the potential of connected stars 

as auxetic systems, Molecular Simulation, 31, 13, 2005, 925–935. 
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PARAMETERS OF UNIT CELL - GEOMETRY OF CORE 

 

 

 
 

Connected stars - unit cell 

 

 
Cross-section of structure 

 
Dimensions: 6 x 4 x 2 [m] 
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BASIC GEOMETRIES - UNIT CELLS OF CORE 

(AUXETICITY → d1 > d2) 

 

 d2=0.3 d2=0.5 d2=0.7 

d1= 

0.3 

   
d1= 

05 

   
d1= 

0.7 
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EFFECTIVE POISSON'S RATIO 

COMPRESSION TEST 
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MECHANICAL METAMATERIALS 
3D Printed Auxetic Mechanical Metamaterial with Chiral Cells and Re-entrant Cores  

 

 
Yunyao Jiang and Yaning Li, 2018 

3D Printed Auxetic Mechanical Metamaterial with Chiral Cells and Re-entrant Cores,  

Scientific Reorts 2018, 8, 2397. DOI: 10.1038/s41598-018-20795-2  
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TWO-PHASE AUXETIC COMPOSITE  

BUILT OF POSITIVE PR CONSTITUENTS 

 

 It is a common approach that auxeticity results from the geometry of the material 

structure so that it has some empty spaces (voids) within its structure 

 Recent works shows, however, that it is possible to obtain a composite 

material that exhibit auxetic , although it has no voids in its volume and all its 

constituent material are characterized by PPR. 

 Such possibility has been presented by Evans* and in several examples within 

recent months**. 

* K. E. Evans, M. A. Nkansah, and I. J. Hutchinson, Acta Metall. Mater. 40(9), 2463–2469 

**Strek, Jopek, Nienartowicz - Dynamic response of sandwich panels with auxetic cores, PSS(B), 252, 7, pp 

1540–1550, 2015 DOI: 10.1002/pssb.201552024 

**Jopek, Strek, Thermal and structural dependence of auxetic properties of composite materials PSS(B), 252, 7, 

1551–1558 (2015) / DOI 10.1002/pssb.201552192 

** Jopek, Strek,  Thermal and structural dependence of auxetic properties of composite materials, International 

Conference Auxetics and other materials and models with "negative" characteristics, Poznań, 15-19 September 

2014 : abstract book / ed. K. W. Wojciechowski, 
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TWO-PHASE AUXETIC COMPOSITE – EXAMPLE 1 

(THERMOAUXETICITY) 

 

 

 
Fibrous composite made of PPR materials:“hard” matrix, “soft” fibres* 

Thermoauxeticity – interaction between temperature and auxeticity  
*Jopek, Strek, PSS(B), 252, 7, 1551–1558 (2015) / DOI 10.1002/pssb.201552192 
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TWO-PHASE AUXETIC COMPOSITE – EXAMPLES 2-3 

 

  

The quarter of sandwich panel  

Left: (SPRH) made of cellular re-entrant honeycombs and filler material. 

Right: (SPRS) made of cellular rotating squares and filler material 
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TWO-PHASE AUXETIC COMPOSITE - EXAMPLE 2 

 

 

 

Strek, Jopek, Nienartowicz - Dynamic response of sandwich panels with auxetic 

cores, PSS(B), 252, 7, pp 1540–1550, 2015 DOI: 10.1002/pssb.201552024 
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TWO-PHASE AUXETIC COMPOSITE - EXAMPLE 3 

 

 

 

Strek, Jopek, Nienartowicz - Dynamic response of sandwich panels with auxetic 

cores, PSS(B), 252, 7, pp. 1540–1550, 2015 DOI: 10.1002/pssb.201552024 
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COMPOSITE MATERIAL DESIGN USING TOPOLOGY 

OPTIMIZATION METHOD 

A composite is a mixture of two or more distinct constituents or 

phases. The purpose of composite material design is to generate materials 

with improved or prescribed property that can’t be found in usual material.  

The inclusions such as fiber, sphere-reinforced and laminated materials 

are commonly used to achieve this purpose. In this type of approach, the 

location, orientation and volume fraction of the fiber, particulate or lamina 

are considered during the design process. 

The topology optimization method is a promising new technique 

for the systematic design of composite material. A richer and wider class 

of material properties can be achieved by using the topology optimization 

method.  
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TOPOLOGY OPTIMIZATION 

 

 
From: http://wildeanalysis.co.uk/fea/software/tosca 
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MATERIALS WITH EXTREME THERMAL EXPANSION 

Sigmund and Torquato [1997] generated composite materials with extreme 

thermal expansion coefficients using a three-phase topology optimization 

method. 
       The three-phase are: two different material phases and a void phase. The 

effective thermoelastic properties of the material are considered as the objective 
function, subject to constraints on elastic symmetry and volume fractions of the 

constituent phase.  

                  

Figure: Optimal microstructures for minimization of effective thermal 

strain coefficient [Sigmund and Torquato, 1997] 
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MATERIALS WITH EXTREME ELASTICITY PROPERTIES 

Yi et al. [2000] used the topology optimization method to find an optimal 

distribution of two viscoelastic phases, so that the stiffness and damping 

characteristic of the composite material will be optimum.  

The design constraints are volume fraction, effective complex moduli, 

geometric symmetry and material symmetry.  

 

Figure: The microstructure of viscoelastic composite material example [Yi 

et al., 2000]. The gray elements represent intermediate phase. 
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NPR GENERATED BY TOPOLOGY OPTIMIZATION 

Larsen et al. [1997] generated a material with negative Poisson’s ratio 

using topology optimization. Figure shows the microstructure of the 

composite material with a negative Poisson’s ratio of –0.8.  

 

Figure: The microstructure of negative Poisson’s ratio composite material 

[Larsen et al., 1997] 



27 

 

MATERIAL PARAMETERS 

 

Isotropic materials parameters used in optimization are:  

 for the soft material: density is ρ1=4000 kg/m3,  Young modulus is 

E1=1e+7 Pa, and the Poisson's ratio is ν1=0.1;  

 for the hard material (structural steel): density  is ρ2=7850kg/m3,  

Young modulus is E2=2e+11 Pa and the Poisson's ratio is ν2=0.33.  

Outer layers consist of the hard material, while the middle layer is a two-

phase material composite. Only the middle layer is subjected to 

minimization by the objective function defined as the minimum of Poisson’s 

ratio value.  

 

Middle composite layer consists of 

%40  %20 orfrac   (fraction) of hard 

material: 2AAV ff   and %100/fracAf   
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SOLID ISOTROPIC MATERIAL WITH  PENALIZATION 

(SIMP) MODEL 

 

Using SIMP model generalized material parameters (e.g. Young’s modulus, 

Poisson ratio or density) can be approximated as a function of control 

variable.  

 

Using SIMP model one can write the generalized Young’s modulus for 

two-phase composite material as  

 

  prEEErE )()( 121 x , (1.1) 

where 1E  and 2E  are the Young’s modulus of first and second material 

and 21 EE  , 1p  is a penalty parameter.  

 In the same manner the generalized Poisson's ratio for 21   is 

  prr )()( 121 x  . (1.2) 
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DESIGN CONTROL VARIABLE 

 

The control variable,  xr , which can be interpreted as a generalized 

material density, is required to satisfy the following constraints:  

  

  f

V

VdVr   x0

 
  10  xr  

(1.3) 

 

where fV
 is the material volume available for distribution (volume 

fraction).  
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EFFECTIVE POISSON RATIO 

 

One can define effective Poisson’s ratio as the negative ratio of the an 

average transverse to average longitudinal strain 

allongitudin

transverse
eff




  , (2.1) 

and effective Young’s modulus as the ratio of an average longitudinal 

stress to average longitudinal strain 

allongitudin

allongitudin

effE



 . (2.2) 

The average stress and the average strain are defined as 


S

dS
S

 
1

 , 
S

dS
S

 
1

  (2.3) 

where σ and ε are in given direction (longitudinal or transverse) and S is 

the volume of the considered composite.  
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EFFECTIVE POISSON RATIO 

 

In the considered cases, the effective Poisson’s ratio were rewritten as 

dependant of the control variable )(xrr  : 

 

)(

)(
)(

r

r
r

allongitudin

transverse
eff




  . (2.4) 
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APPLIED CONSTRAINS 

 

Applied constrains: pointwise inequality, which fulfills the formula: 

1)(0  xr  for 
2Ax  (2.5) 

The second is the integral inequality:  

2

2

)(0 AAdAxr
A

f   
(2.6) 

where fA  is A fraction of the domain to use for the distribution of the 

second material, A1 and A2 are areas of the considered domain. 
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MECHANICAL GOVERNING EQUATIONS 

 

The elastic isotropic state is governed by the following equations, laws and 

rules. 

When we neglect the body force the Navier's equation in steady state 

0σ   (3.1) 

where σ  is the stress tensor. 

 

The constitutive law (the stress-strain relation) for linear conditions reads: 

ε Dσ  , (3.2) 

where σ  is the stress tensor, ε  is the small strain tensor   T
uuε 

2

1
 

(superscript T denotes transpose of matrix or vector) and D  is the elastic 

matrix - 1DS  is compliance matrix. 
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The stress and strain components are described in vector form with the 

six stress and strain components in column vectors: 

 

 Txzyzxyzyx σ , 

 Txzyzxyzyx ε . 
(3.3) 

 

 

Linear Hooke law - isotropic material of components  

Lamé’s constants   and   in terms of Young’s modulus, E , and Poisson’s 

ratio,  , are the following: 

  




211 


E
, 

 





12

E
. (3.4) 
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BOUNDARY CONDITIONS (quarter of structure) 

 

 

RIGHT: Lx   and hLy  ,0  - 

free BC;  

LEFT (SYMMETRY): 0x  and 

hLy  ,0  - roller BC: 0un ; 

BOTTOM (SYMMETRY): 0y  

and Lx ,0  - roller BC: 0un ;  

TOP: hLy   and Lx ,0  - 

boundary load: Fnσ  , where 

 LF ,0F̀ , where n  is the normal 

unit vector to boundary 
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COMSOL MULTIPHYSICS MODELING SOFTWARE 
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NUMERICAL RESULTS – TWO-PHASE AUXETIC 

  

 

Figure: (TOP) Distribution of two 

materials in compressed composite 

obtained using topology optimization 

(quarter and full). Blue color represents 

soft material and read is hard structural 

steel and  

(BOTTOM) deformation of auxetic 

structure ( 4.0fA , 18.3eff ) 
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Figure: Distribution of two materials in 

compressed composite obtained using 

topology optimization  

( 2.0fA , 69.2eff ) 

Figure: Distribution of two materials in 

compressed composite  

( 6.0fA , 49.3eff ) 
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THREE-LAYERS SANDWICH STRUCTURE – Af=0.4 

  
 

4.0fA , 02.0h ,  1L , 72.3eff  
 

4.0fA , 05.0h ,  1L , 82.3eff  
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THREE-LAYERS SANDWICH STRUCTURE – Af=0.4 

 

  
 

4.0fA , 07.0h ,  1L , 73.3eff  
 

4.0fA , 1.0h ,  1L , 83.3eff  

 



41 

 

THREE-LAYERS SANDWICH STRUCTURE – Af=0.2 

  
 

2.0fA , 02.0h ,  1L , 75.2eff  

 

2.0fA , 05.0h ,  1L , 17.3eff  
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THREE-LAYERS SANDWICH STRUCTURE – Af=0.2 

  

 
2.0fA , 07.0h ,  1L , 48.3eff  

 
2.0fA , 1.0h ,  1L , 75.2eff  

 

  



43 

 

STRUCTURES WITH NON-INTUITIVE BEHAVIOUR 

HONEYCOMB TOPOLOGY OPTIMIZATION 

  A B 

  
Optimized distribution of 

constituents 

Deformed shaped and 

displacement field 

1 

RE = 

102  

Af = 

0.2 

t=0.2 

νeff =-

0.78 
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2 

RE = 

103  

Af = 

0.2 

t=0.2 

νeff =-

6.91 
 

 

3 

RE = 

102  

Af = 

0.4 

t=0.2 

νeff =-

1.41 
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4 

RE = 

103  

Af = 

0.4 

t=0.2 

νeff =-

7.95 

  

5 

RE = 

102  

Af = 

0.2 

t=0.2

8 

νeff =-

1.89 
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6 

RE = 

103  

Af = 

0.2 

t=0.2

8 

νeff =-

10.33 
  

7 

RE = 

102  

Af = 

0.4 

t=0.2

8 

νeff =-

2.39 
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8 

RE = 

103  

Af = 

0.4 

t=0.2

8 

νeff =-

9.17 
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RE-ENTRANT HONEYCOMB TOPOLOGY OPTIMIZATION 

 

  A B 

  
Optimized distribution of 

constituents 

Deformed shaped and 

displacement field 

1 

RE = 

102  

Af = 

0.2 

t=0.2 

νeff 

=1.74 
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2 

RE = 

103  

Af = 

0.2 

t=0.2 

νeff 

=12.9

7 
  

3 

RE = 

102  

Af = 

0.4 

t=0.2 

νeff 

=2.95 
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4 

RE = 

103  

Af = 

0.4 

t=0.2 

νeff 

=16.1

1 
  

5 

RE = 

102  

Af = 

0.2 

t=0.2

8 

νeff 

=8.42 
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6 

RE = 

103  

Af = 

0.2 

t=0.2

8 

νeff 

=27.8

4   

7 

RE = 

102  

Af = 

0.4 

t=0.2

8 

νeff 

=9.67 
  



52 

 

8 

RE = 

103  

Af = 

0.4 

t=0.2

8 

νeff 

=29.7 

  
 

 

Strek, T.; Jopek, H.; Idczak, E.; Wojciechowski, K.W.  

Computational Modelling of Structures with Non-Intuitive Behaviour. 

Materials 2017, 10, 1386. 
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SUMMARY AND CONCLUSIONS 

 

 In the present paper we have shown explicitly FEM applicability to study 

auxetic material or sandwich panel with auxetic phase. 

 

 Geometric structure of core and its parameters have great influence on 
mechanical properties of auxetic material.   

 

 Auxetic characteristic of sandwich panel core were obtained using 

topology optimization. Two-phase composite with negative Poisson’s 
ratio was generated using topology optimization. 

 

 In general, all gained topology structures have complicated shapes. 

Irregular shapes structures can achieve smaller values of Poisson's ratio. 
 

 Auxeticity of composite materials depends not only on topology of its 

constituents, but also on the ratio of its Young’s moduli and PR. 
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FREQUENCY RESPONSE FUNCTIONS (FRF) 
 

Engineering dynamics is strongly based on the modelling, analysis, and prediction of 

vibration of a physical system. Vibration could result from harmonic load acting on 

system or motion with damping. It could be described with the use of multiple parameters. 

One of them is frequency response function (FRF) which is widely used in many fields 

of engineering and plays an important role in many applications of linear vibrations 

analysis.  
 

Different types of frequency response functions [Gatti, 2014] are known in engineering 

issues e.g.:  

 displacement to force ratio which is called receptance,  

 admittance or dynamic compliance;  

 velocity to force ratio called mobility;  

 acceleration to force ratio which is accelerance or inertance;  

 force to displacement ratio that is called dynamic stiffness;  

 force to velocity ratio which is mechanical impedance and  

 force to acceleration ratio called an apparent mass. 
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MECHANICAL IMPEDANCE 
 
Mechanical impedance is formally defined for linear systems over the domain of 

frequency as the ratio of the Fourier transforms of the force excitation and the velocity 

response. The frequency-dependent characteristic property of the system [On, 1967] can 

be written as: 

 

∑ Z𝑖𝑗v𝑗
𝑁

𝑗=0
= F𝑖                                                              (2.1) 

or, in the matrix form, 

 

[Z𝑖𝑗]{v𝑗} = {F𝑖}                                                                (2.2) 

 

where i=1...N, j=1...N and N denotes the number of degrees of freedom. 
 

The elements Z𝑖𝑗 are complex number that express the ratio of the transform vibratory 

force at coordinate i to the transform vibratory velocity at coordinate j. They are 

dependent on frequency and may be called impedance parameters of the system. In the 

case of i=j, the Z𝑖𝑗 are called point impedance parameters,  

and for all i≠j, they are called transfer impedance parameters.  
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However, Z𝑖𝑗 maybe also considered as the ratio of the force input at the i-th coordinate to 

the velocity response at the j coordinate when all other coordinates are infinitely 

restrained (i.e., zero velocities). 

Moreover, the matrix [Z𝑖𝑗] could be considered as the mechanical impedance matrix of the 

system, while the column matrix {v𝑗} represents the transform of velocities corresponding 

to the transform of input forces {F𝑖}. 
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POINT IMPEDANCE PARAMETER (DRIVING POINT IMPEDANCE) 
 

When the force and velocity are measured at the same point and in the same direction, the 

ratio is denoted as the point impedance parameter (or the driving point impedance).  
If the force and velocity are measured in different directions or at different points, one 

defines the ratio as the transfer impedance [Gerdeen, 1975].  

In most cases, however, the term mechanical impedance means a driving point mechanical 

impedance. The mechanical impedance 𝑍̅ at the driving frequency 𝜔 is defined 

mathematically as:  

 

𝑍̅(𝜔) =
𝐹(𝜔)

𝑣̅(𝜔)
=

𝐹0𝑒𝑖𝜔𝑡

𝑣0𝑒𝑖(𝜔𝑡−𝜑) = 𝑍𝑒𝑖𝜑,                                             (2.3) 

 

where 𝜔 is the angular frequency, 𝜔 = 2𝜋 𝑓𝑟𝑒𝑞, 𝐹0 is the amplitude of a harmonic force, 

𝑣0 is the amplitude of the velocity in direction of a force and 𝜑 is the phase angle by 

which the force leads the velocity.  
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AVERAGE MECHANICAL IMPEDANCE 
 

The mechanical impedance can be divided into its real and imaginary parts  

 

  𝑍̅(𝜔) = 𝑍𝑒𝑖𝜑 = 𝑅 + 𝑖𝑆,                                               (2.4) 

 

where R is the real part called the mechanical resistance, S is the imaginary part called 

the mechanical reactance and tan 𝜑 = 𝑆 𝑅⁄ .  
 

To describe the dynamic characteristic of whole structure Ω one can introduce average 

mechanical impedance. It can be defined as: 

 

〈𝑍〉 =
𝐹0

(∫ 𝑣0𝑑ΩΩ ∫ 𝑑ΩΩ⁄ )
.                                     (2.5) 
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SPECIFIC STIFFNESS 
 

Application of materials requires not only its high strength and high stiffness properties, 

but also its light weight. For low-density materials, their strength and stiffness are not 

prominent, but the ratios of strength and stiffness to density are high, such as 

magnesium alloys, composites, and honeycombs.  

 

To facilitate the comparison of deformation resistance of various metamaterials, the 

concept of Specific Stiffness is introduced, which is defined as the ratio of tensile 

stiffness to the density of materials. The expression of the specific stiffness 

 

〈𝐾〉 =
𝐹0 𝑤0⁄

𝑚 𝑉⁄
=

𝐹0 (
∫ 𝑤0𝑑ΩΩ

∫ 𝑑ΩΩ

⁄ )⁄

(
∫ 𝜌𝑑ΩΩ

𝐿3
⁄ )

                                (2.6) 

where 𝐹0 is the amplitude of a harmonic force in z-axis and 𝑤0 is amplitude of displacement in z-
axis, m is mass of unit cell and V is volume of wrapping of unit cell. 
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MOBILITY AND IMPEDANCE * 

 
 * Mike Brennan,  Mobility and Impedance Methods 
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IMPEDANCE OF SIMPLE ELEMENTS 
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SIMPLE ELEMENTS IN PARALLEL 
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SIMPLE ELEMENTS IN SERIES 
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SOLID MECHANICS - NAVIER'S EQUATION OF MOTION 
 
Assuming harmonic motion of the structure we can write displacement vector in the form 

of: 

𝐮(𝑥, 𝑡) = 𝒖(𝑥)𝒆−𝑖𝜔𝑡 (3.1) 

 

and finally the Navier’s equation of motion as:  

 

𝜌𝜔2𝐮 − ∇ ∙ 𝛔 = 𝐅𝑒𝑖φ. 
(3.2) 

 
Linear constitutive equation - Hooke's law 

 

𝛔 = 𝐃 ∙ 𝛆,                                                    (3.3) 

 

where 𝐃 is elasticity tensor and 𝛔 is stress tensor, 𝛆 is strain tensor. 
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THREE-DIMENSIONAL ANTI-TETRA-CHIRAL STRUCTURE 
 
In this research three-dimensional anti-tetra-chiral structure is analyzed as a periodic 

structure with the unit cell (UC) presented at Figure 1. Influence of geometric parameters 

of a UC of the periodic structure on dynamic properties of the structure is investigated.  

  

 

Figure: Unit cell of the three-dimensional anti-tetra-chiral periodic auxetic structure. 
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EXAMPLE 1. MECHANICAL IMPEDANCE, UNIT CELL - 2 CM BOX 

Frequency range (0.2 , 20) kHz, step 200 Hz, 100 steps 
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DEFORMATION OF UC OF PERIODIC STRUCTURE  
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EXAMPLE 2. MECHANICAL IMPEDANCE, UNIT CELL - 1 mm BOX 

Frequency range (0.5 , 50) kHz, step 500 Hz, 100 steps 
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DEFORMATION OF UC OF PERIODIC STRUCTURE  
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INFLUENCE OF SIZE OF RIBS SQUARE CROSS-SECTION 
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TRANSMISSION LOSS 

 

The difference between the sound energy on one side of the system and that radiated 
from the second side (both expressed in decibels) is called the  transmission loss.  

 

Transmission loss (TL) is given by  

out

in

W

W
TL log10 , (1.1) 

where inW  denotes the incoming power at the inlet,  

outW  denotes the transmitted (outgoing) power at the outlet. 
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MODEL OF MECHANICAL SYSTEM 

 
Masses (2), springs (3) and damper. 
 

 
 

Powers: 
0

W ,  
1

W - of spring with the spring constant 0k and 
1

k , respectively , 

  `
2

1 2

1000
xktW   

  2

102011
)(

2

1
xxktW   

(1.2) 

where: 
10

x ,  
20

x  are amplitudes of harmonic motion of masses. 
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EQUATIONS OF MASSES MOTION 
 

Assuming that engine generates extortion force applied to system through spring, 

we get following equations of masses motion 

 
102112

1

2

1
xkxxk

t

x
m 




, (1.3) 

  02
2221212

2
2

2 









t

x
bxkxxk

t

x
m . (1.4) 

 
Let us assume a time-harmonic motion of masses  

  tiextx 
101 

 
  tiextx 

202  . (1.5) 

 

Substituting (1.5) in eq. (1.4) we get 

  0 2022021020120
2

2  xibxkxxkxm  , (1.6) 

and finally  

  2

2221

2

11

2

1

01

20

 mibkkmkk

Pk
x




 . (1.7) 
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Transmission loss of mechanical power TL in vibrating system is 

 
1020

10

1

0

2

10201

2

100

1

0 log20log10log10log10
xx

x

k

k

xxk

xk

W

W
TL





  (1.8) 

where 

2

2

2

2

2

2

2

2

2

2

2

1

1020

10

1

1





k

m

k

b
i

k

m

k

b
i

k

k

xx

x








, (1.9) 

Assuming 
10

kk   , 0
2
b  and substituting (1.9) in (1.8), transmission loss of 

mechanical power in vibrating system without damping is 

  
















 1

1
log201

1
log20||log20

22
02

21

0102

01



kk

xx

x
TL , (1.10) 

where: 2202 mk  is called the undamped angular frequency of the receiver 

environment; 
 

21

2
02 1

kk





for 

02
   is reduced angular frequency of 

vibrating system. 
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TRANMISSION LOSS OF MECHANICAL SYSTEM (with  b2=0) 
 

  
 

TRANMISSION LOSS OF MECHANICAL SYSTEM (with b2>0) 
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