Example: A Permanent Magnet

As an example of a magnetostatics problem, consider how to model a horseshoe-shaped permanent magnet. It consists of a ferromagnetic material, but the two end sections, often painted red and white, are premagnetized in opposite directions. The magnetic field pattern around such a permanent magnet is well known.

The domain consists of four regions:

- Three parts of the permanent magnet—the two premagnetized ends and the curved midsection
- · The air surrounding the magnet

The permeability μ in air equals $\mu_0 = 4\pi \cdot 10^{-7}$. Because the magnet is made of a ferromagnetic material, its relative permeability normally depends on the strength of the magnetic field, but in this model it is a constant with a value of 5000. The premagnetization adds a magnetization vector, pointing in the positive x-direction at the upper end and in the negative x-direction in the lower end. The magnitude of the magnetization is 750 kA/m.

It is reasonable to neglect the field at the boundaries of the computational domain, thus leading to the Dirichlet boundary condition $\mathbf{A} = 0$ on the exterior boundary.

Model Library Path: COMSOL Multiphysics/Electromagnetics/permanent_magnet

Modeling Using the Graphical User Interface

MODEL NAVIGATOR

- 1 Go to the Model Navigator and select **2D** in the **Space dimension** list.
- 2 Open the COMSOL Multiphysics>Electromagnetics folder and then select Magnetostatics in the list of application modes.
- 3 Use the default quadratic Lagrange elements.
- 4 Click OK.

OPTIONS AND SETTINGS

1 Enter the following values in the Axes/Grid Settings dialog box. To set the grid spacing, click the Grid tab and clear the Auto check box.

AXIS		GRID	
x min	-3	x spacing	0.2
x max	3	Extra x	
y min	-2	y spacing	0.2
y max	2	Extra y	

2 Enter these names and expressions in the Constants dialog box:

NAME	EXPRESSION	
murFe	5000	
Mpre	750000	

GEOMETRY MODELING

Start by modeling the upper and the lower premagnetized parts of the magnet.

- 1 Click the **Rectangle/Square** button and draw a rectangle from (0, 0.2) to (0.4, 0.4).
- 2 Click the **Rectangle/Square** button and draw a rectangle from (0, -0.4) to (0.4, -0.2).
 - Next draw the rest of the magnet using boundary modeling:
- 3 Click the **Line** button, and click the points (0.4, 0.2), (0.4, 0.4), and (0.6, 0.4).
- 4 Click the **2nd Degree Bezier Curve** button, then click at the points (1, 0.4), (1, 0), (1, -0.4), and (0.6, -0.4).
- 5 Click **Line** and then click at the points (0.4, -0.4), (0.4, -0.2), and (0.6, -0.2).
- 6 Click **2nd Degree Bezier Curve** and then click at the points (0.8, -0.2), (0.8, 0), (0.8, 0.2), and (0.6, 0.2).
- 7 Close the region with the right mouse button.
 - The last step in creating the geometry is to model the surrounding air.
- 8 Draw a rectangle from (-3, -2) to (3, 2).

PHYSICS SETTINGS

Boundary Conditions

Use the default magnetic insulation boundary condition everywhere.

Subdomain Settings

The relative permeability for the magnet is 5000, and the magnetization vector is $(M_{\rm pre}, 0)$ in the upper premagnetized part and $(-M_{\rm pre}, 0)$ in the lower part.

- 1 Go to the **Physics** menu and choose **Subdomain Settings**.
- 2 Enter the PDE coefficients as shown in the following table. For subdomains 1 and 4 use the default constitutive relationship $\mathbf{B} = \mu_0 \mu_r \mathbf{H}$, and for subdomains 2 and 3 use the constitutive relationship $B = \mu_0 \mathbf{H} + \mu_0 \mathbf{M}$.

SUBDOMAIN	1	2	3	4
μ_r	1			murFe
$M_{_{X}}$		-Mpre	Mpre	
$M_{\rm y}$		0	0	

MESH GENERATION

To resolve the field at the ends of the magnets, use a smaller mesh size at those boundaries:

- 1 From the **Mesh** menu, choose **Free Mesh Parameters**.
- 2 Click the **Boundary** tab.
- 3 Select boundaries 4 and 7 (the ends of the magnet).
- 4 Type 0.01 in the **Maximum element size** edit field.
- 5 Click OK.
- 6 Click the **Initialize Mesh** button in the Main toolbar to create the mesh.

COMPUTING THE SOLUTION

Use the adaptive solver to improve the solution accuracy.

- 1 Go to the **Solve** menu and choose **Solver Parameters**.
- 2 In the **Solver Parameters** dialog box, select the **Adaptive mesh refinement** check box underneath the **Solver** list.
- 3 Click OK.
- 4 Click the **Solve** button.

POSTPROCESSING AND VISUALIZATION

Use the streamline plot to visualize the magnetic field using field lines where the distance between the lines is inversely proportional to the magnetic field strength.

- 1 Open the **Plot Parameters** dialog box.
- 2 Select the **Streamline** check box.
- 3 Click the **Streamline** tab.
- 4 Select Magnitude controlled from the Streamline plot type list.
- 5 Type 50 in the **Density** edit field.
- 6 Click the Line Color tab.
- 7 Click the **Color** button, and then select a white color from the palette in the **Streamline Color** dialog box. Click **OK**.
- 8 Click OK.

The resulting plot shows the well-known field pattern.

Alternative Modeling Approach

An alternate way to model a permanent magnet is to set surface currents on the premagnetized parts. To do so, change the model from the previous discussion in the following fashion:

PHYSICS SETTINGS

Boundary Conditions

- 1 Select the **Interior boundaries** check box in the **Boundary Settings** dialog box.
- 2 Enter these boundary coefficients:

BOUNDARY	5, 9	6, 8
Туре	Surface current	Surface current
J_{sz}	Mpre	-Mpre

Subdomain Settings

Modify the subdomain settings to remove the magnetization:

SUBDOMAIN	2, 3
$M_{_X}$	0

COMPUTING THE SOLUTION

Go to the **Solver Parameters** dialog box and clear the **Adaptive mesh refinement** check box to turn off the adaptive solver. Simply use the mesh obtained by solving the previous problem. Solve the problem again.

POSTPROCESSING AND VISUALIZATION

The solution plot reveals a result identical to the one where you modeled the premagnetization using a magnetization vector.

References

- 1. Cheng, D. K. Field and Wave Electromagnetics. Addison-Wesley. Reading, MA, 1989.
- 2. Jin, Jianming. The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 1993.
- 3. Popovic, Branko D., Introductory Engineering Electromagnetics, Addison-Wesley, Reading, MA, 1971.