

METODA ELEMENTÓW SKO ŃCZONYCH

X. The Finite Element Method

X.1. Introduction

Many CFD practitioners prefer finite volume methods because the derivation
of the discrete equations is based directly on the underlying physical
principles, thus resulting in “physically sound” schemes. From a mathematical
point of view, finite volume, difference, and element methods are closely
related, and it is difficult to decide that one approach is superior to the others;
these spatial discretization methods have different advantages and
disadvantages.

Today the Finite Element Method (FEM) has been widely employed
in solving field problems arising in modern industrial practices. The text in
this chapter (section) is short introduction to the application of the FEM to the
analysis of fluid flow which is a very common phenomenon in many
processes of manufacturing and engineering.

In this chapter / section we shall introduce the reader to a finite
element treatment of the equations of motion for various problems of fluid
mechanics. Much of the activity in fluid mechanics has however pursued a
finite difference formulation and more recently a derivative of this known as
the finite volume technique. Competition between the newcomer of finite
elements and established techniques of finite differences have appeared on the
surface and led to a much slower adoption of the finite element process in
fluid mechanics than in structures. The reasons for this are perhaps simple. In
solid mechanics or structural problems, the treatment of continua arises only
on special occasions. The engineer often dealing with structures composed of
bar-like elements does not need to solve continuum problems. Thus his
interest has focused on such continua only in more recent times. In fluid

mechanics, practically all situations of flow require a two or three dimensional
treatment and here approximation was frequently required. This accounts for
the early use of finite differences in the 1950s before the finite element
process was made available. However, as it was pointed out in book
[Zie2000a], there are many advantages of using the finite element process.
This not only allows a fully unstructured and arbitrary domain subdivision to
be used but also provides an approximation which in self-adjoint problems is
always superior to or at least equal to that provided by finite differences.

One advantage of the finite element method over finite difference
methods is the relative easy with which the boundary conditions of the
problem are handled [Bur1985]. Many physical problems have boundary
conditions involving derivatives and the boundary of the region is irregularly
shaped. Boundary conditions of this type are very difficult to handle using
finite difference techniques, since each boundary conditions involving a
derivative must be approximated by a difference quotient at the grid points,
and irregular shaping of the boundary makes placing the grid points difficult.

The construction procedure in the FEM is independent of the particular
boundary conditions of the problem.

X.2. The method of weighted residuals (Galerkin's method)

Some physical problems can be stated directly in the frame of variational
principle which consists of determining the function which makes a certain
integral statement called functional stationary. However the form of the
variational principle is not always obvious and such a principle does not exist
for many continuum problems.
 As an alternative to solve such differential equations we may use a
variety of weighted residual methods. Weighted residual methods are
numerical techniques which can be used to solve a single or set of partial
differential equations. Consider such a set in domain Ω with boundary δΩ=Γ,
where u is the exact solution and may represent a single variable or a column

vector of variables. where at least the first order gradient in the variable is
prescribed.

Applying the method of weighted residuals involves basically two
steps. The first step is to assume the general functional behavior of the
dependent field variable in some way so as to approximately satisfy the given
differential equation and boundary conditions. Substitution of this
approximation into the original differential equation and boundary conditions
then results in some error called a residual. This residual is required to vanish
in some average sense over the entrie solution domain. The second step is to
solve the equation (or equations) resulting from the first step and thereby
specialize the general functional form to a particular function, which then
becomes the approximate solution sought. According to Galerkin's method,
the weighting functions are chosen to be the same as the approximating
functions.
 Let us consider differential equation

() fuL = (x.y)

defined within a domain Ω and with boundary conditions specified at the
boundary of Γ.
 An operator L is said to be linear if and only if it satisfies the relation

() () ()vbLuaLvbuaL +=⋅+⋅ (x.y)

for any scalars a and b and dependent variables u and v . When an operator
does not satisfy the above condition it is said to be nonlinear. The function u
(i.e. solution) is not only required to satisfy the operator equation, it is also
required to satisfy the boundary conditions associated with the operator.

In the weighted-residual method the solution u is approximated by
expressions u of the form

∑
=

+=
N

j
jjSuSu

1
0 (x.y)

where jS are trial functions, and 0S must satisfy all the specified boundary

conditions (00 =S if all the specified boundary conditions are homogeneous)

of the problem, and iS must satisfy the following conditions:

• jS should be such that ()jSL is well defined and nonzero, i.e.

sufficiently differentiable;
• jS must satisfy at least the homogeneous form of the essential

boundary conditions of the problem;
• for any N , the set { }N,...,j,S j 21= is linearly independent.

We begin by introducing the error, or residual, ΩR in the approximation (by
substitution of the approximation u into the operator equation) which is
defined by

() fuLR −=Ω (x.y)

where u contains trial functions and satisfies the Dirichlet boundary
conditions of 0uu = at Γ⊆Γ1 . If the residual is smaller the approximation is

better. It should be noted that ΩR is a function of position in Ω. Now we
attempt to reduce this residual as close to zero as possible. If we have

0=Ω∫
Ω

ΩdRTi (x.y)

where M1,2,...,i ,Ti = is a set of arbitrary functions and ∞→M , then it can

be said that the residual ΩR vanishes. Here iT are called weighting functions

which, in general, are not the same as the approximation (trial) functions iS .
Expanding above equation we have

()() 0=Ω−∫
Ω

dfuLTi . (x.y)

A function u that satisfies above equation for every function iT in Ω is a
weak solution of the differential equation, whereas the strong solution u
satisfies the differential equation at every point of Ω.
 When the operator L is linear above equation can be simplified to the
form

() ()()∫∑ ∫
Ω= Ω

Ω−=

Ω dSLfTudSLT ij

N

j
ji 0

1

 (x.y)

or

∑
=

=
N

j
ijij fuA

1

. (x.y)

where

()∫
Ω

Ω= dSLTA jiij (x.y)

and

()()∫
Ω

Ω−= dSLfTf ii 0 . (x.y)

Note that the coefficients of matrix A is not symmetric jiij AA ≠ .

 The weighted-residual method (when ii ST ≠) is also sometimes

referred to as the Petrov-Galerkin method. For different choices of iT the
method is known by different names. We outline below the most frequently
used methods.

The Galerkin method. For ii ST = the weighted-residual method is
known as the Galerkin method. When the operator is a linear differential
operator of even order, the Galerkin method reduces to the Ritz method. In
this case the resulting matrix will be symmetric because half of the
differentiation can be transformed to the weight functions.

The least-squares method. The least-squares methods seeks a solution

in the form (XXX) ∑
=

+=
N

j
jjSuSu

1
0 and determines the constants ju by

minimizing the integral of the square of the residual

02 =Ω
∂
∂
∫
Ω

ΩdR
ui

 (x.y)

or

0=Ω
∂
∂
∫
Ω

Ω
Ω dR

u

R

i

 (x.y)

A comparison of Eq.(XXX) with Eq.(XXX) shows that
i

i u

R
T

∂
∂= Ω . If L is a

linear operator Eq.(XXX) becomes

() () () ()()∫∑ ∫
Ω= Ω

Ω−=

Ω dSLfSLudSLSL ij

N

j
ji 0

1

which yields a symmetric matrix but requires the same order of differentition
as the operator equation.

The collocation method. The collocation method seeks approximate
solution u by requiring the residual ()ux,RR ΩΩ = in the equation to be

identically to zero at N selected points ix , N,...,,i 21= in the domain Ω

() 0=Ω ji u,R x . (x.y)

The selection of the points ix is crucial in obtaining a well conditioned system
of equations and ultimately in obtaining an accurate solution. The collocation

points can be shown to be a special case of Eq. (XXX) 0=Ω∫
Ω

ΩdRTi for

()iiT xx −= δ , where ()xδ is the Dirac delta function

() () ()ξξδ fdf =Ω−∫
Ω

xx . (x.y)

 The Courant method. To so-called Courant method combines the basic
concepts of the Ritz method and the least-squares method (for linear operator).
The method seeks approximate solution u by minimizing the modified
quadratic functional

() () () 2

2
fuLuIuI p −+= α

 (x.y)

Where ()uI is the quadratic functional associated with () fuL = , when L is

linear, and α is the penalty parameter (preassigned). Obviously the statement
make sense only for operator equation that admit functional formulation.

X.3. Time discretization schemes

In time-dependent (unsteady) problems, the undetermined unknown
parameters ju are assumed to be functions of time, while the trial functions

jS are assumed to depend on spatial coordinates. This leads to two stages of

solution, both of which employ approximation methods. In the solution of
unsteady problems we can first consider the spatial approximation and the
time (or timelike) approximation next. Such a strategy is commonly known as
semidiscrete approximation in space. The spatial discretisation leave us with
the first order ordinary differential equations with respect to time. There are
numerous ways of accomplishing the discretisation of the time domain.

The first order system of equations

rwKwM =+ & (x.1)

where
t∂

∂=
• w
w needs to be discretised in time. If we consider only single PDE

we have uw = else w is set of unknown parameters of few variables (e.g.
velocity, temperature, pressure). The most commonly used method for such a
system is the generalized mid-point or trapezoidal family of methods. The
trapezoidal method applied to can be written as follows

() () 1111111 +++++++ =+ nnnnnnn t, t, rwwKwwM & (x.2)

and

n

nnnn

tδ
wwww 1 −=+ ++ 1

2
 (x.3)

Substituting (x.3) in (x.2) we obtain

1111
1 22

++++
+ +

 +=

 + nnnnnn
n

tt
rMwwwK

M
&

δδ
 (x.4)

The method involves the calculation of the derivatives on the right hand side.
Here ()111 , +++ = nnn twMM . The generalized mid-point family of methods is
written as

() () ()αααααααα ++++++++ =+ nnnnnnnn t, t, t, wrwwKwwM & (x.5)

where

() 11 1 ++ +−= nnn www αα , (x.6)

n

nn
n tδα

ww
w

−= +
+

1& , (x.7)

ttttt nnnn αδαδ +=+=+1 . (x.8)

Substituting (x.6)-(x.8) into (x.5) we obtain

() αα
α

α
α α

δ
α

δ ++
+

++
+ +

 −−=

 + nnn
n

nn
n

tt
rwK

M
wK

M
11 . (x.9)

No calculation of derivatives is necessary for this method. By changing the
values of α from 0 to 1, different members of this family of methods are
identified. We can obtain a number of well-known difference schemes by
choosing the value of α:

α =0 forward difference (Euler) scheme (conditionally stable);
α =1/2 midpoint rule (Crank-Nicolson) scheme (unconditionally stable);
α =2/3 Galerkin method (unconditionally stable);
α =1 backward difference (backward Euler) scheme (conditionally stable).

All, except the forward Euler of the above schemes are implicit (they require
matrix inversion for solution). As far as accuracy is concerned the midpoint
rule is to be preferred. The generalized midpoint rule conserves linear and
quadratic quantities, while the trapezoidal rule conserves only the linear ones.

It must be pointed out that one can except better results if smaller
steps are used. In practice one wishes to take as large a time step as possible to
cut down the computational expense. Larger time steps, in addition to
decreasing the accuracy of the solution, can introduce some unwanted,
numerically induced oscillations into the solution. Thus an estimate of an
upper bound on time step proves to be very useful.
 The system of equations for incompressible flow is non-linear and
therefore an iterative solution is necessary within one time step. The fully
discretised using the mentioned in this chapter generalized mid-point family of
methods given in Eq.(xxxxxxx) may be written as

() p
n

p
n

p
n

p
np

n
p
n

p
n

tt ααα
α

α
α α

δ
α

δ +++
++

++
+ +

−−=

+ rwK

M
wK

M
11

1 . (x.9)

where p represents the iteration number. Above equation may be solved until

the norm p
n

p
n 1

1
1 +

+
+ − ww falls below an acceptable tolerance. To speed up

convergence within one time step the Newton-Raphson method may be used
[Hua1999].

X.4. Overview of the finite element method

There is an extensive literature on finite elements, both for theory and
applications. Popular books include those by Huebner [Hue1975] (a definitive
work from an engineering perspective), Hinton and Owen [Hin1979],
Zienkiewicz and Taylor [Zie2000a, Zie2000b, Zie2000c].

In this chapter, we give a sketch of the finite element procedures. This
sketch introduces important concepts of local approximation functions (linear
and quadratic), the Galerkin method, treatment of boundary conditions, and
assembly and solution of global matrices.
 The governing equations of given problem must first be discrtetised
spatially to obtain the finite element equations. The conventional Galerkin
weighted residual technique discussed in previous section/chapter is the most
powerful and general method available to achieve finite element spatial
discretisation for any set of differential equations.

X.5. Local approximations

In the finite element method, the solution u of a PDE is approximated by low-
order polynomials on local elements. The local elements constitute the mesh;
typical elements used are triangles and quadrilaterals in 2D, and tetrahedra and
hexahedra in 3D.

Figure 3.1: 2D triangular mesh.

To give a simple example, consider a triangular mesh in 2D (Figure 3.1). We
concentrate on the single triangle with corner nodes { }k,j,i , and let the values

of u at the nodes be { }kji u,u,u . We approximate u within the local element

by

() () ()[] []Tkjikji u,u,uy,xN,y,xN,y,xNu ⋅= (x.y)

where () () (){ }y,xN,y,xN,y,xN kji are interpolation functions. In the simplest

case, these are linear polynomials such that

() lpppl y,xN δ= (x.y)

where lpδ is the Kronecker symbol.

For example, if the local element is the triangle with nodes at
() () ()110100 ,,,,, , the three linear interpolation functions are

xN −=11 , yxN −=2 , yN =3 (x.y)

and, given nodal values ()kji u,u,u , the linear approximation to u in the

element is

() () kji yuuyxuxu +−+−= 1 . (x.y)

We can use (for example) the following element types:

3-node triangle, linear approximation

6-node triangle, quadratic
approximation

4-node quadrilateral, bi-linear
approximation

8-node quadrilateral, bi-quadratic
approximation (serendipity element)

4-node tetrahedron, linear
approximation

10-node tetrahedron, quadratic
approximation

8-node hexahedron, tri-linear
approximation

20-node hexahedron, tri-quadratic
approximation (serendipity element)

Figures X. Examples of finite element.

X.6. Calculation of the nodal values

X.5.1. Solution of steady problems

The nodal values are pointwise approximations to the solution of a system of
PDEs

() fuL = (x.y)

defined within a domain Ω and with boundary conditions specified at the
boundary of Γ. The boundary conditions typically specify and/or its
derivatives. If u is specified on the boundary, it is known as a Dirichlet
boundary condition. A natural boundary condition specifies the value of terms
arising from integration by parts, such as the flux. The PDE system might be a
well-specified problem in its own right, or it might result from an algorithm
applied to a more complex problem. Domain Ω can be in 2 or 3 dimensions,
whilst both L and u can have multiple components. In the above, f

represents a forcing term for the PDEs, and ()uL typically includes
derivatives of u up to second order.
 We represent the solution ()xu of the PDE system as follows:

() ()∑= xSuxu ii (x.y)

The PDE will be satisfied in the weak sense provided

() (){ }∫
Ω

=− 0dVfuLxT j , eN,...,j 1= (x.y)

for a given set of test functions jT . If L has multiple components, then T has

a corresponding number. In the Galerkin method as implemented in many
codes, the shape functions iS and the test functions jT are identical. However,

since the shape functions do not have second derivatives everywhere, we
usually integrate some terms by parts prior to the substitution of the shape
function representation for u . In the finite element method the shape function

iS for each node is continuous and identically zero outside the elements of

which the node is a part. Within each of those elements, iS is a low-order
polynomial which takes the value one at node j and zero at all other nodes.

To accomplish the integration by parts, we symbolically decompose
the operator L into first- and second-order operators

21 LLL ∇+= (x.y)

Here both 1L and 2L are first-order operators. 2L may be vector or tensor
valued, with possibly a reduction operation when the grad is applied. The
weak form of the PDE thus gives

() () () ()

() () ()

∫

∫ ∫∫

∫ ∫∫ ∫

Ω

Ω∂ ΩΩ

Ω ΩΩ Ω

=

=∇−+=

=∇−∇+=

fdVT

dVTuLdSuLTdVuLT

dVTuLdVuLTdVuLTdVuLT

j

jjj

jjjj

221

221

n (x.y)

where Ω∂ is the boundary and n is the unit outward normal. Using this
integrated form of the PDE, it is now possible to approximate u using the
shape functions. This process is known as assembly, and the end result is a
finite dimensional system over the eN nodes:

i

N

j
jij ruK

e

=∑
=1

, eN,...,i 1= (x.y)

where

() () dVSSLdVSLSK ijjiij ∇−= ∫ ∫
Ω Ω

21 (x.y)

and

() ∫∫
ΩΩ∂

+−= fdVSdSuLSr iii 2n . (x.y)

The matrix K is called the stiffness or global matrix, and vector r is called
the load vector.

X.6.2. Solution of time dependent problems

X.6.2.1. First strategy

Let us consider time-dependent PDE equation

() fuL
t

u =+
∂
∂

 (x.y)

defined within a domain Ω and with boundary conditions specified at the
boundary of Γ. ()uL typically includes derivatives of u up to second order.

The numerical strategies are based on discretizing governing equations
first in time, to get a set of simpler partial differential equations, and then
discretizing the time-discrete equations in space. There are two main
discretizing in time schemes: backward Euler and Crank−Nicolson.

The backward Euler method uses the algorithm

() fuL
t

uu
n

nn =+−
+

+
1

1

δ
 (x.y)

which is equivalent to

() ()fututLu nnn +=+ ++ δδ 11 . (x.y)

In the heart of the algorithm, the equation (x.y) is assembled and solved at
each timestep.

The Crank−Nicolson approximation uses the algorithm:

() fuuL
t

uu
nn

nn =++−
+

+
1

1

2

1

δ
. (x.y)

Next define nn uuu −= +1δ and verify that uδ satisfies

() () f tutLuL
t

u n δδδδδ +−=+
2

. (x.y)

The above equation is assembled and solved for uδ at each timestep.

Let us consider the backward Euler approximation with the finite element
method

() ()fututLu nnn +=+ ++ δδ 11 . (x.y)

The PDE will be satisfied in the weak sense provided

() () (){ }∫
Ω

++ =+−+ 011 dVfututLuxT nnnj δδ , eN,...,j 1= (x.y)

for a given set of test functions jT . To accomplish the integration by parts, we

symbolically decompose the operator L into first- and second-order operators

21 LLL ∇+= (x.y)

The weak form of the PDE thus gives

()()

() () ()

() () ()

()∫

∫ ∫∫∫

∫ ∫∫∫

∫

Ω

Ω∂ Ω
++

Ω
+

Ω
+

Ω Ω
++

Ω
+

Ω
+

Ω
++

+=

=∇−++=

=∇−∇++=

=+

dVfutT

dVTuLdSuLTdVuLTdVuT

dVTuLdVuLTdVuLTdVuT

dVutLuT

nj

jnnjnjnj

jnnjnjnj

nnj

δ

δ

1212111

1212111

11

n
 (x.y)

The end result is a finite dimensional system over the eN nodes:

i

N

j
jij ruK

e

=∑
=1

, eN,...,i 1= (x.y)

where

() () dVSSLdVSLSdVSSK ijjijiij ∇−+= ∫ ∫∫
Ω ΩΩ

21 (x.y)

and

() ()∫∫
Ω

+
Ω∂

++−= dVfuSdSuLSr ninii 12n . (x.y)

X.6.2.2. Second strategy

Strategies for time-dependent problems presented in previous sections were
based on discretizing governing equations first in time and then discretizing
the time-discrete equations in space.
 One can write finite element shape functions to include the time
variable and thus incorporate it into the general finite element method
procedure [Hua1999]. However, due to the conceptual simplicity of the time
dimension simpler finite difference approximations presented in the previous
section are generally favoured. Most schemes currently used are constructed in
this way. We can also discretizing governing equations first in space.

Let us consider time-dependent PDE equation

() fuL
t

u =+
∂
∂

 (x.y)

defined within a domain Ω and with boundary conditions specified at the
boundary of Γ. ()uL typically includes derivatives of u up to second order.

The main numerical strategies are based on discretizing governing
equations first in time, to get a set of simpler partial differential equations, and
then discretizing the time-discrete equations in space.

The PDE will be satisfied in the weak sense provided

() ()∫
Ω

=

 −+

∂
∂

0dVfuL
t

u
xT j , eN,...,j 1= (x.y)

for a given set of test functions jT .

To accomplish the integration by parts, we symbolically decompose the
operator L into first- and second-order operators 21 LLL ∇+= . Here both 1L

and 2L are first-order operators. The weak form of the PDE thus gives

()

() () ()

() () () ∫∫ ∫∫∫

∫ ∫∫∫

∫∫

ΩΩ∂ ΩΩΩ

Ω ΩΩΩ

ΩΩ

=∇−++
∂
∂=

=∇−∇++
∂
∂=

=+
∂
∂

fdVTdVTuLdSuLTdVuLTdV
t

u
T

dVTuLdVuLTdVuLTdV
t

u
T

dVuLTdV
t

u
T

jjjjj

jjjj

jj

221

221

n

. (x.y)

The end result is a finite dimensional system over the eN nodes:

i

N

j
jij

N

j
jij ruKuM

ee

=+∑∑
== 11

& , eN,...,i 1= (x.y)

where

∫
Ω

= dVSSM jiij (x.y)

() () dVSSLdVSLSK ijjiij ∇−= ∫ ∫
Ω Ω

21 (x.y)

and

() ∫∫
ΩΩ∂

+−= fdVSdSuLSr iii 2n . (x.y)

The matrix M is called the mass matrix.

X.7. Assembly and sub-assembly

Although the components of K are written as integrals over the whole mesh,
they are in fact zero everywhere except on elements containing both node i
and node j. Nodes that have no element in common have a zero entry; hence
K is a sparse matrix. Assembly in FEM is carried out element by element.
Each pair of nodes of the element generates a component to be added to K .
These components are added into an element matrix, prior to being added into
the global matrix. In this process, subsets of the global vectors required as data
for assembly, including the coordinates, are selected and sorted into a standard
nodal order for the element. This is referred to as the local level; the vectors
are called local vectors. The integrals making up K have to be evaluated, and
this is done by Gauss quadrature. Standard interpolation formulae are used to
calculate the quantities concerned at quadrature points, and weighted sums of
these values are used to approximate the integral.

X.8. Boundary conditions

The finite element method distinguishes between essential and natural
boundary conditions:

a) essential (Dirichlet)

() guG = (x.y)

where the value of variable is prescribed;

b) natural (Neumann)

() suS = (x.y)

As an introduction to these concepts, consider the weak form of the
left-hand side of Laplace's equation:

∫∫ ∫
Ω∂Ω Ω

∇⋅+∇⋅∇−=∇ dS uSVd uSdV uS iii n2 (x.y)

The last term is an integral over the boundary of the normal derivative (or
flux). This is called a natural boundary condition; the boundary integrands
represent a physical quantity (for example, flux in a diffusion problem, or
stress in a linear elasticity problem). The condition is implemented by
substituting directly if the integrand is known, or by substituting an expression
involving unknowns. Natural boundary conditions are specified at the time
that the PDE problem is specified. On the other hand, an absolute specification

ii cu = at some set of boundary nodes is called an essential boundary
condition. This is enforced by including it in the set of equations, replacing the
equation which had been formed by using iS as a test function.

To illustrate this point, suppose that node 3 is a boundary node with
value Uu =3 . The third row of the matrix is independent of other nodal values
and is given by

[] [] Uu,...,u,u,u,...,,,, N =⋅ 32100100 (x.y)

Incorporation of this boundary condition into the matrix system gives the new
system

=

...

r

U

r

r

...

u

u

u

u

...............

...KKKK

...

...KKKK

...KKKK

4

2

1

4

3

2

1

44434241

24232221

14131211

0100 (x.y)

If the matrix K is symmetric it is necessary to do a further elimination to
regain symmetry:

−

−
−

=

...

UKr

U

UKr

UKr

...

u

u

u

u

...............

...KKK

...

...KKK

...KKK

434

232

131

4

3

2

1

444241

242221

141211

0

0100

0

0

 (x.y)

To summarise the discussion so far, essential boundary conditions are
implemented by modification of the global matrix and right-hand side (RHS)
vector, whilst natural boundary conditions are often accounted for in the RHS
vector alone. These concepts are so important, however, that we now provide
a more detailed commentary.

In the Galerkin procedure, a term such as ExpDm (where mD denotes

partial differentiation with respect to mx , m could be i or j, and Exp might or
might not involve suffices, an unknown or another differentiation) is
multiplied by a test function T over the region Ω with boundary Ω∂ . For all
second-order terms and some first-order terms, the integration is done by
parts. This gives:

()∫ ∫∫
Ω Ω∂Ω

+−= dS Expn TdV ExpTDdV ExpD T mmm . (x.y)

The application of boundary conditions in the finite element method

requires either that some information is used to replace the integrand resulting
from second-order terms, when T is non-zero there, or that for such test
functions the whole equation is replaced by an essential condition. So when
we implements such terms, we adds only the second integral into the equations
- either to the sparse matrix or the right-hand side vector.

The boundary integrals often have physical significance, and it is best to try to
formulate the equations to take advantage of this. In fact, many second-order
equations correspond to one of the following patterns:

• rate of change of heat with time = div (flux),
• change of momentum with time = div (stress).

For steady equations the rates would be zero. The divergences are integrated
by parts, and the boundary integrands will be the normal components of either
the flux or the stress. On interior boundaries, integrals are generated on each
side, and the net integrand is the difference.

There are three possible specifications on any particular boundary.
1. We can assert that the integrand (flux, stress, ...) is zero on an outside
boundary or the integrand is continuous on an interior boundary.
2. We can set the boundary integral, by including the appropriate value, which
will be added to the left-hand side.

3. We can specify a Dirichlet condition, in which case the equation, with its
boundary integrals, will be overwritten.

X.9. The solution stage

The finite element solution is obtained by solving

∑
=

=
N

j
ijij ruK

1

, N,...,i 1= (x.y)

where the right-hand side is made up of boundary integrals from natural
boundary conditions, terms from essential boundary conditions and boundary
integrals. The matrix system is invariably large and sparse, and often
symmetric positive definite. To solve the matrix system we can use both direct
and indirect.
The above description illustrates concepts underlying the use of finite
elements method.

X.10. Shape functions in local coordinate system

X.10.1. Basic two-dimensional C(0) rectangular elements

 The shape functions for the four noded rectangular element in local
coordinate system can be abbreviated to

Ni i i= + +1

4
1 1()()ξ ξ η η

(x.y)

where

i 1 2 3 4
ξ i

-1 1 1 -1

ηi
-1 -1 1 1

I ξ i ηi
1 -1 -1
2 1 -1
3 1 1
4 -1 1

The shape functions for the eight noded rectangular element can be
summarised:
for corner nodes

Ni i i i i= + + + −1

4
1 1 1()()()ξ ξ η η ξ ξ η η

(x.y)

for midside nodes 0=iξ

Ni i= − +1

2
1 12()()ξ η η

(x.y)

for midside nodes 0=iη

Ni i= + −1

2
1 1 2()()ξ ξ η

(x.y)

where

i 1 2 3 4 5 6 7 8
ξ i

-1 0 1 1 1 0 -1 -1

ηi
-1 -1 -1 0 1 1 1 0

i ξ i ηi
1 -1 -1
2 0 -1
3 1 -1
4 1 0
5 1 1
6 0 1
7 -1 1
8 -1 0

X.10.2. Isoparametric elements

 We can generalise these elements by using the isoparametric
representation. Consider an isoparametric formulation for an m-node element.
We can express the geometry of such elements using the nodal coordinates x
and y of element and the shape functions of element described above. Thus at
any point within an element the Cartesian coordinates may be obtained from
the expressions:

x N xi
i

m

i(,) (,)ξ η ξ η=
=
∑

1
(x.y)

and

y N yi
i

m

i(,) (,)ξ η ξ η=
=
∑

1
(x.y)

The Cartesian derivative of any function f defined over the element using the
expression:

f N fi
i

m

i(,) (,)ξ η ξ η=
=
∑

1
(x.y)

may be obtained by the chain rule of differentiation

∂
∂

∂
∂ξ

∂ξ
∂

∂
∂η

∂η
∂

f

x

f

x

f

x
= +

(x.y)

∂
∂

∂
∂ξ

∂ξ
∂

∂
∂η

∂η
∂

f

y

f

y

f

y
= +

(x.y)

where

∂
∂ξ

∂
∂ξ

f N
fi

i

m

i=
=
∑

1
(x.y)

∂
∂η

∂
∂η

f N
fi

i

m

i=
=
∑

1
(x.y)

The terms

∂ξ
∂

∂η
∂

∂ξ
∂

∂η
∂x x y y

(x.y)

can be obtained using the following procedure. First we evaluate the matrix

J =

=

= =

= =

∑ ∑

∑ ∑

∂
∂ξ

∂
∂ξ

∂
∂η

∂
∂η

∂
∂ξ

∂
∂ξ

∂
∂η

∂
∂η

x y

x y

N
x

N
y

N
x

N
y

i

i

m

i
i

i

m

i

i

i

m

i
i

i

m

i

1 1

1 1

(x.y)

which is termed the Jacobian matrix J. The inverse of the Jacobian is then
evaluated

J
J

− =

=
−

−

1 1
∂ξ
∂

∂η
∂

∂ξ
∂

∂η
∂

∂
∂η

∂
∂ξ

∂
∂η

∂
∂ξ

x x

y y

y y

x xdet

(x.y)

An element area of the element is given as

ηξdd dxdy Jdet= (x.y)

For an isoparametric element we have

∫ ∫ ∫
Ω Ω Ω

==
xy

dd gdd fdxdyyxf
ξη ξη

ηξηξηξηξ),(det),(),(J

(x.y)

and

∫ ∫ ∫
Γ Γ Γ

Γ=Γ=
xy

d gd fdxdyyxf
ξη ξη

ξηξη ηξηξ),(det),(),(J

(x.y)

X.10.3. Numerical integration

 We can adopt a numerical integration procedure to evaluate such
integrals

∫ ∫∫
− −Ω

=
1

1

1

1

),(),(ηξηξηξηξ
ξη

dd gdd g

(x.y)

or

±

±
=Γ

∫

∫
∫

−

−

Γ
1

1

1

1

)1,(

),1(

),(

ξξ

ηη
ηξ

ξη

ξη

dg

dg

dg

(x.y)

The r-point Gauss-Legendre integration rule have the form:

∑∑∫ ∫
= =− −

=
r

i
j

r

j
iji gwwdd g

1 1

1

1

1

1

),(),(ηξηξηξ

(x.y)

r ξ i

wi
1 0.00000 2.00000
2 0.577530

-0.577530
1.00000
1.00000

3 0.00000
0.774597
-0.774597

8/9
5/9
5/9

4 0.861136
-0.861136
0.339981
-0.339981

0.347855
0.347855
0.652145
0.652145

Note that r-point rule can integrate exactly polynomial functions of degree 2r-
1 or less. This type of formulation enables us to use elements of the very
general nature.

X.11. Shape functions for triangular and tetrahedral element family

X.11.1. Triangular element family

The advantage of an arbitrary triangular shape in approximating to any
boundary shape has been amply demonstrated in [Zie2000a]. The number of
nodes in each member of the family is now such that a complete polynomial
expansion, of the order needed for interelement compatibility, is ensured. This
follows by comparison with the Pascal triangle in which we see the number of
nodes coincides exactly with the number of polynomial terms required. Direct
generation of shape functions will be preferred - and indeed will be shown to
be particularly easy. Before proceeding further it is useful to define a special
set of normalized coordinates for a triangle (area coordinates) [Zie200a].

While Cartesian directions parallel to the sides of a rectangle were a
natural choice for that shape, in the triangle these are not convenient. A new
set of coordinates, 321 L,L,L for a triangle 1,2,3 is defined by the following
linear relation between these and the Cartesian system:

∑
=

=
3

1i
ii xLx

∑
=

=
3

1i
ii yLy

∑
=

=
3

1

1
i

iL

(x.y)

To every set, 321 L,L,L (which are not independent, but are related by the third
equation), there corresponds a unique set of Cartesian coordinates.

At point j:

≠
=

==
ji ,

ji ,
L iji 0

1
δ for 321 ,,j = .

Solving Eq. (xxxx) gives

∆
++=

2
ycxba

L iii
i (x.y)

in which

33

22

11

1

1

1

2
1

yx

yx

yx

det=∆ (x.y)

and

23321 yxyxa −= , 321 yyb −= , 231 xxc −= (x.y)

etc., with cyclic rotation of indices 1,2 and 3.
 Relation between the Cartesian coordinates and area coordinates
implicates that geometric place for iL , 321 ,,i = , are lines parallel to edge

kj − (kji ≠≠) with 0=iL .
For the first element of the triangular series (linear element with three

nodes placed at the vertices of triangle) the shape functions are simply the area
coordinates. Thus

ii LN = (x.y)

for 321 ,,i = . This is obvious as each individually gives unity at one node i ,
zero at others, and varies linearly everywhere.

 To derive shape functions for other elements a simple recurrence
relation can be derived. However, it is very simple to write an arbitrary
triangle of order m . We can use Silvester’s formula [Sil1969] to generate
shape functions of order m :

() () () ()321321 LPLPLPL,L,LN cbaabc = (x.y)

where

() 10 =iLP

() ∏
=

+−=
s

j

i
is j

jmL
LP

1

1

(x.y)

and

mcba =++ . (x.y)

Shape functions are generated for all nodes, all sequences of ()c,b,a which
satisfies mcba =++ . Indices c,b,a in above equations denotes node
position in triangle. The area coordinates of this node we can evaluate using

m

c
L,

m

b
L,

m

a
L === 321 . (x.y)

Number of nodes of shape function (interpolating polynomial) of order m is
equal to ()() 221 ++ mm . For example, if we would like to evaluate shape
functions of second order we have to calculate following expressions

011101110002020200 N,N,N,N,N,N . (x.y)

It is easy to verify that corner nodes shape functions are

() () ()121212 330022202011200 −=−=−= LLN,LLN,LLN (x.y)

And mid-sides nodes shape functions are as follows

320113110121110 444 LLN,LLN,LLN === . (x.y)

We can notice that in high-order shape functions in all cases three nodes of
triangle element are placed at vertices of triangle and others on boundary or
inside the triangle.

When element matrices have to be evaluated it will follow that we are
faced with integration of quantities defined in terms of area coordinates over
the triangular region. It is useful to note in this context the following exact
integration expression

()∫∫ ∫ ∫
∆

−

∆
+++

=∆= 2
2

2
1

0

1

0
21321321

2

!cba

!c!b!a
dLdLLLLdxdyLLL

L
cbacba . (x.y)

In paper [Str1999] procedure automatically generating shape functions

using symbolic computations has been presented.

X.11.2. Tetrahedral element family

Firstly, once again complete polynomials in three coordinates are achieved at
each stage. Secondly, as faces are divided in a manner identical with that of
the previous triangles, the same order of polynomial in two coordinates in the
plane of the face is achieved and element compatibility ensured [Zie2000a].

Once again special coordinates 4321 L,L,L,L for a tetrahedral 1,2,3,4
are introduced defined by:

∑
=

=
4

1i
ii xLx

∑
=

=
4

1i
ii yLy

∑
=

=
4

1i
ii zLz

(x.y)

∑
=

=
4

1

1
i

iL

Solving Eq. (xxxx) gives

V

zdycxba
L iiii

i 6

+++= (x.y)

in which

444

333

222

111

1

1

1

1

6

1

zyx

zyx

zyx

zyx

detV = (x.y)

For the first element of the triangular series (linear element with three
nodes placed at the vertices of triangle) the shape functions are simply the area
coordinates. Thus

ii LN = (x.y)

for 4321 ,,,i = . This is obvious as each individually gives unity at one node i ,
zero at others, and varies linearly everywhere.
 We can use again Silvester’s formula [Sil1969] to generate shape
functions of order m :

() () () () ()43214321 LPLPLPLPL,L,L,LN dcbaabcd = (x.y)

where

() 10 =iLP (x.y)

() ∏
=

+−=
s

j

i
is j

jmL
LP

1

1

and

mdcba =+++ . (x.y)

Shape functions are generated for all nodes, all sequences of ()c,b,a which
satisfies mdcba =+++ . Indices d,c,b,a in above equations denotes node
position in triangle. The area coordinates of this node we can evaluate using

m

d
L,

m

c
L,

m

b
L,

m

a
L ==== 4321 . (x.y)

Number of nodes of shape function (interpolating polynomial) of order m is
equal to ()()() 6321 +++ mmm . For example, if we would like to evaluate
shape functions of second order we have to calculate following expressions

0002002002002000 N,N,N,N

001101010110100110101100 N,N,N,N,N,N .
(x.y)

It is easy to verify that corner nodes shape functions are

() () () ()12121212 440002330020220200112000 −=−=−=−= LLN,LLN,LLN,LLN (x.y)

And mid-sides nodes shape functions are as follows

430011420101320110

411001311010211100

LLN,LLN,LLN

,LLN,LLN,LLN

===
===

 (x.y)

The following exact integration expression is valid

() V
!cba

!d!c!b!a
dxdydzLLLL

V

dcba 6
34321 +++

=∫∫∫ . (x.y)

 (x.y)

X.12. Finite element model of non-isothermal flow

In order to demonstrate temporal descrtization we use equation for Newtonian
three dimensional flow. Beginning with the dimensionless incompressible
Navier-Stokes equations

kk
k

kkkk fvPr
x

p

x

v
v

x

v
v

x

v
v

t

v =∇−
∂
∂+

∂
∂+

∂
∂+

∂
∂+ 2

3
3

2
2

1
1∂

∂
 (x.y)

for 321 ,,k = (three dimensional problem) and the continuity equation (the
conservation of mass)

0
3

3

2

2

1

1 =
∂
∂+

∂
∂+

∂
∂

x

v

x

v

x

v
. (x.y)

For incompressible flow under non-isothermal conditions, the energy
conservation equation must also be included in the formulation

Φ+∇=
∂
∂+

∂
∂+

∂
∂+

∂
∂ η PrEcT

x

T
v

x

T
v

x

T
v

t

T 2

3
3

2
2

1
1 .

(5.8)

We have to notice that considered problem is non-linear. If we linearize the
governing equations by approximating the nonlinear terms (e.g. convective
terms) we can solve the set of equations using any of iterative scheme. Using
naïve linearizing method the equations can be rewritten as

kk
k

kkkk fvPr
x

p

x

v
v~

x

v
v~

x

v
v~

t

v =∇−
∂
∂+

∂
∂+

∂
∂+

∂
∂+ 2

3
3

2
2

1
1∂

∂
 (x.y)

0
3

3

2

2

1

1 =
∂
∂+

∂
∂+

∂
∂

x

v

x

v

x

v
. (x.y)

Φ+∇=
∂
∂+

∂
∂+

∂
∂+

∂
∂ η PrEcT

x

T
v~

x

T
v~

x

T
v~

t

T 2

3
3

2
2

1
1 .

(5.8)

where kv~ , for 321 ,,k = denotes the value of velocity components from
previous iteration step. To achieve better approximation and convergence of
iterative process we can use one of the method described in previous Chapter.

The following shape functions will be used to approximate the field
variables

∑
=

=
nu

i
iivNv

1
11 , ∑

=

=
nu

i
iivNv

1
22 , ∑

=

=
nu

i
iivNv

1
33 , ∑

=
=

np

i
ii pNPp

1

, (x.y)

i

nc

i
icNTT ∑

=
=

1

.

Applying the Galerkin weighted residual procedure to our governing equations
using the above shape functions we obtain the Galerkin finite element method
(GFEM) equations discretized in space. This is illustrated in the following
lines.

Substitution of (x.y) into the governing equation yields

Ω=

Ω

∂
∂

+
∂

∂
+

∂
∂

−

+Ω
∂

∂
+

Ω

∂
∂

+
∂
∂

+
∂
∂

+

∫

∫

∫

∫

Ω

Ω

Ω

Ω

dfN

dv
x

N
v

x

N
v

x

N
NPr

dp
x

NP
N

dv
x

N
v~Nv

x

N
v~Nv

x

N
v~NvNN

ki

kj
j

kj
j

kj
j

i

j
k

j
i

kj
j

llkj
j

llkj
j

llkjji

2
3

2

2
2

2

2
1

2

3
3

2
2

1
1&

. (x.y)

and

ΩΦ=

Ω

∂
∂

+
∂

∂
+

∂
∂

−

Ω

∂
∂

+
∂

∂
+

∂
∂

+

∫

∫

∫

Ω

Ω

Ω

d N EcPr

dc
x

NT
c

x

NT
c

x

NT
N

dc
x

NT
v~Nc

x

NT
v~Nc

x

NT
v~NcNTN

i

j
j

j
j

j
j

i

j
j

llj
j

llj
j

lljji

η

2
3

2

2
2

2

2
1

2

3
3

2
2

1
1&

. (x.y)

In the continuity equation we must use the pressure shape functions iNP for
the weighting functions as the continuity equation will only be enforced at the
pressure modes

03
3

21
2

1
1

=Ω+Ω+Ω∫ ∫∫
Ω ΩΩ

dv
x

N
NPdv

x

N
NPdv

x

N
NP i

j
ii

j
ii

j
i ∂

∂
∂
∂

∂
∂

 (x.y)

By applying integration by parts to the integral expression of equations, we
can obtain expressions containing lower-order derivatives, and hence we can
use approximating functions with lower-order interelement continuity. For all
second-order terms and some first-order terms, the integration is done by
parts. This gives:

() ()∫ ∫∫
Ω ΓΩ

+−= dS Exprn TdV ExprTDdV ExprD T miimmi (x.y)

where
m

m x
D

∂
∂= and Expr is expression.

When integration by parts is possible, it also offers a convenient way to
introduce the natural boundary conditions that must be satisfied on some
portion of the boundary. Although the boundary terms containing the natural
boundary conditions appear in the equations for each element, in the assembly

of the element equations only the boundary elements give nonvanishing
contributions.

For second order derivative using formula (XXX) we obtain

∫∫ ∫
ΩΩ Γ

Ω
∂
∂

∂
∂−Γ

∂
∂

=Ω
∂

∂
dv

x

N

x

N
dvn

x

N
Ndv

x

N
N kj

s

j

s

i
kjs

s

j
ikj

s

j
i 2

2

(x.y)

When integration by parts is applied to the momentum equation we obtain

Ω=

Γ

∂
∂

+
∂
∂

+
∂
∂

−

Ω

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

+Ω
∂

∂
+

Ω

∂
∂

+
∂
∂

+
∂
∂

+

∫

∫

∫

∫

∫

Ω

Γ

Ω

Ω

Ω

dfN

dvn
x

N
vn

x

N
vn

x

N
NPr

dv
x

N

x

N
v

x

N

x

N
v

x

N

x

N
Pr

dp
x

NP
N

dv
x

N
v~Nv

x

N
v~Nv

x

N
v~NvNN

ki

kj
j

kj
j

kj
j

i

kj
ji

kj
ji

kj
ji

j
k

j
i

kj
j

llkj
j

llkj
j

llkjji

3
3

2
2

1
1

332211

3
3

2
2

1
1&

. (x.y)

and when we use it for the energy conservation equation this gives

ΩΦ=

Γ

∂
∂

+
∂

∂
+

∂
∂

−

Ω

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

Ω

∂
∂

+
∂

∂
+

∂
∂

+

∫

∫

∫

∫

Ω

Γ

Ω

Ω

d N EcPr

dcn
x

NT
cn

x

NT
cn

x

NT
N

dc
x

NT

x

N
c

x

NT

x

N
c

x

NT

x

N

dc
x

NT
v~Nc

x

NT
v~Nc

x

NT
v~NcNTN

i

j
j

j
j

j
j

i

j
ji

j
ji

j
ji

j
j

llj
j

llj
j

lljji

η

3
3

2
2

1
1

332211

3
3

2
2

1
1&

. (x.y)

We may write the final set of the GFEM equations discretized in

space in a fully coupled form as follows

=

⋅

+

⋅

fT

0

f3

f2

f1

c

p

v

v

v

K550000

00K43K42K41

0K34K3300

0K240K220

0K1400K11

c

p

v

v

v

MT0000

00000

00M00

000M0

0000M1

3

2

1

3

2

1

3

2

&

&

&

&

&

 (x.y)

where

∫
Ω

Ω=== dNN jiijijij 32 MMM1 (x.y)

∫
Ω

Ω= dNTN jiijMT (x.y)

∫

∫

∫

Γ

Ω

Ω

Γ

∂
∂

+
∂
∂

+
∂
∂

−

Ω

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

Ω

∂
∂

+
∂
∂

+
∂
∂

=

dn
x

N
n

x

N
n

x

N
NPr

d
x

N

x

N

x

N

x

N

x

N

x

N
Pr

d
x

N
v~N

x

N
v~N

x

N
v~NN

jjj
i

jijiji

j
ll

j
ll

j
lliij

3
3

2
2

1
1

332211

3
3

2
2

1
1K11

. (x.y)

∫
Ω

Ω
∂

∂
= d

x

NP
N j

iij
1

K14 (x.y)

ijijij K11K33K22 == (x.y)

ijijij K14K34K24 == (x.y)

∫
Ω

Ω= dv
x

N
NP i

j
iij 1

1∂
∂

K41 , ∫
Ω

Ω= dv
x

N
NP i

j
iij 2

2∂
∂

K42 ,

∫
Ω

Ω= dv
x

N
NP i

j
iij 3

3∂
∂

K43
(x.y)

∫

∫

∫

Γ

Ω

Ω

Γ

∂
∂

+
∂

∂
+

∂
∂

−

Ω

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

Ω

∂
∂

+
∂

∂
+

∂
∂

=

dn
x

NT
n

x

NT
n

x

NT
N

d
x

NT

x

N

x

NT

x

N

x

NT

x

N

d
x

NT
v~N

x

NT
v~N

x

NT
vNN

jjj
i

jijiji

j
ll

j
ll

j
lliij

3
3

2
2

1
1

332211

3
3

2
2

1
1K55

. (x.y)

Ω= ∫
Ω

dfNii 1f1 , Ω= ∫
Ω

dfNii 2f2 , Ω= ∫
Ω

dfNii 3f3 ,

ΩΦ= ∫
Ω

d N EcPr ii ηfT
(x.y)

X.13. Finite element model of non-Newtonian flow

In this chapter a method for analyzing transient non-Newtonian flow is
presented. We begin with the Navier-Stokes equation for non-Newtonian
fluids represented by conservation of momentum

fSvv
v =⋅∇−∇+∇⋅+ Prp
t∂

∂
 (x.y)

and conservation of mass for incompressible fluid

0=⋅∇ v . (x.y)

To solve transient flow of non-Newtonian fluids the above equations

are linearized. Let r denote the number of linearization iterations and the

superscript n denotes the previous time step and n+1 denotes the current time
step. The linearization is carried out as follows:

() 01 =⋅∇ +
r
nv (x.y)

() () ()

() () ()
() () ()() () 1

1
1
1

1
1

1
1

1
21

11

1
1
1

1

−
+

−
+

−
+

−
+

+
−
++

+
−
+

+

=

 ∇+∇∇−

∇−∇+

∇⋅+−

r
n

Tr
n

r
n

r
n

r
n

r
n

r
n

r
n

r
n

n
r
n

Pr

Prp

t

fvv

v

vv
vv

η

η

δ

 (x.y)

Rearranging terms we obtain:

() 01 =⋅∇ +
r
nv (x.y)

() () () () () ()

() () () ()()

 ∇+∇∇++=

=∇−∇+

∇⋅+

−
+

−
+

−
+

−
+

+
−
+++

−
+

+

Tr
n

r
n

r
n

nr
n

r
n

r
n

r
n

r
n

r
n

r
n

Pr
t

Prp
t

1
1

1
1

1
1

1
1

1
21

111
1
1

1

vv
v

f

vvv
v

η
δ

η
δ . (x.y)

In the above:

() nn vv =+
0

1 , () nn pp =+
0

1 , () nn ηη =+
0

1 . (x.y)

The governing equations for non-Newtonian flow summarized above

must first be discrtetized in space. The following shape functions will be used
to approximate the field variables

() (){ }∑
=

++ =
nu

i

r
nii

r
n vNv

1
1111 , () (){ }∑

=
++ =

nu

i

r
nii

r
n vNv

1
1212 , (x.y)

() (){ }∑
=

++ =
nu

i

r
nii

r
n vNv

1
1313 , () (){ }∑

=
++ =

nu

i

r
nii

r
n pNPp

1
11

Due to time step process and iteration technique applied in algorithm we have
to use shape functions with additional indexes.

Substitution of (x.y) into the virtual work equation yields

(){ } (){ } (){ } 0
13

3
12

2
11

1

=Ω+Ω+Ω
+

Ω
+

Ω
+

Ω
∫∫∫ dv

x

N
NPdv

x

N
NPdv

x

N
NP r

nj
j

i
r

nj
j

i
r

nj
j

i ∂
∂

∂
∂

∂
∂

 (x.y)

() () () (){ }

(){ }

() (){ }

() () () ()

() () ()

() () ()
∫

∫

∫

∫

∫

∫

Ω

−
+

−
+

−
+

Ω

−
+

−
+

−
+

Ω

−
+

−
+−

+

+
Ω

−
+

+
Ω

+
−
+

−
+

−
+

Ω

Ω

++

Ω

++

Ω

++=

=Ω

++−

Ω+

Ω

∂
∂

+
∂
∂

+
∂
∂

+

d
x

v

x

v

x
PrN

d
x

v

x

v

x
PrN

d
x

v

x
Pr

t

v
fN

dv
x

N

x

N

x

N
N

dp
x

NP
N

dv
x

N
v

x

N
v

x

N
v

t

N
N

r
n

r
n

r
n

i

r
n

r
n

r
n

i

r
n

r
nnr

ni

r

nj
jjjr

ni

r

nj
j

i

r

nj
jr

n
jr

n
jr

n
j

i

1

1
13

3

1
11

3

1
1

1

1
12

2

1
11

2

1
1

1

1
11

1

1
111

11

112
3

2

2
2

2

2
1

2
1
1

1
1

11
3

1
13

2

1
12

1

1
11

2

∂
∂

∂
∂

∂
η∂

∂
∂

∂
∂

∂
η∂

∂
∂

∂
η∂

δ

∂
∂

∂
∂

∂
∂

η

∂
∂
δ

 (x.y)

() () () (){ }

(){ }

() (){ }

() () () () ()

() ()

() () ()
∫

∫

∫

∫

∫

∫

Ω

−
+

−
+

−
+

Ω

−
+

−
+

Ω

−
+

−
+

−
+−

+

+
Ω

−
+

+
Ω

+
−
+

−
+

−
+

Ω

Ω

+

Ω

+

Ω

+++=

=Ω

++−

Ω+

Ω

∂
∂

+
∂
∂

+
∂
∂

+

d
x

v

x

v

x
NPr

d
x

v

x
NPr

d
x

v

x

v

x
Pr

t

v
fN

dv
x

N

x

N

x

N
N

dp
x

NP
N

dv
x

N
v

x

N
v

x

N
v

t

N
N

r
n

r
n

r
n

i

r
n

r
n

i

r
n

r
n

r
nnr

ni

r

nj
jjjr

ni

r

nj
j

i

r

nj
jr

n
jr

n
jr

n
j

i

2

1
13

3

1
12

3

1
1

2

1
12

2

1
1

1

1
12

2

1
11

1

1
121

12

122
3

2

2
2

2

2
1

2
1
1

1
2

12
3

1
13

2

1
12

1

1
11

2

∂
∂

∂
∂

∂
η∂

∂
∂

∂
η∂

∂
∂

∂
∂

∂
η∂

δ

∂
∂

∂
∂

∂
∂

η

∂
∂
δ

 (x.y)

() () () (){ }

(){ }

() (){ }

() () () () ()

() () ()

() ()
∫

∫

∫

∫

∫

∫

Ω

−
+

−
+

Ω

−
+

−
+

−
+

Ω

−
+

−
+

−
+−

+

+
Ω

−
+

+
Ω

+
−
+

−
+

−
+

Ω

Ω

+

Ω

++

Ω

+++=

=Ω

++−

Ω+

Ω

∂
∂

+
∂
∂

+
∂
∂

+

d
x

v

x
NPr

d
x

v

x

v

x
NPr

d
x

v

x

v

x
Pr

t

v
fN

dv
x

N

x

N

x

N
NPr

dp
x

NP
N

dv
x

N
v

x

N
v

x

N
v

t

N
N

r
n

r
n

i

r
n

r
n

r
n

i

r
n

r
n

r
nnr

ni

r

nj
jjjr

ni

r

nj
j

i

r

nj
jr

n
jr

n
jr

n
j

i

3

1
13

3

1
1

3

1
12

2

1
13

2

1
1

3

1
11

1

1
13

1

1
131

13

132
3

2

2
2

2

2
1

2
1
1

1
3

13
3

1
13

2

1
12

1

1
11

2
∂

∂
∂
η∂

∂
∂

∂
∂

∂
η∂

∂
∂

∂
∂

∂
η∂

δ

∂
∂

∂
∂

∂
∂

η

∂
∂
δ

 (x.y)

By applying integration by parts to the integral expression of equations, we
can obtain following expressions containing lower-order derivatives

() () () (){ }

(){ }

() (){ }

() () () ()

() () ()

() () ()

()
∫

∫

∫

∫

∫

∫

∫

Γ

+

Ω

−
+

−
+

−
+

Ω

−
+

−
+

−
+

Ω

−
+

−
+−

+

+
Ω

−
+

+
Ω

+
−
+

−
+

−
+

Ω

Γ
∂

∂
−

Ω

++

Ω

++

Ω

++=

=Ω

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂−

Ω+

Ω

∂
∂

+
∂
∂

+
∂
∂

+

d
v

N

d
x

v

x

v

x
NPr

d
x

v

x

v

x
NPr

d
x

v

x
Pr

t

v
fN

dv
x

N

x

N

x

N

x

N

x

N

x

N
Pr

dp
x

NP
N

dv
x

N
v

x

N
v

x

N
v

t

N
N

r
n

i

r
n

r
n

r
n

i

r
n

r
n

r
n

i

r
n

r
nnr

ni

r

nj
jijijir

n

r

nj
j

i

r

nj
jr

n
jr

n
jr

n
j

i

n
11

1

1
13

3

1
11

3

1
1

1

1
12

2

1
11

2

1
1

1

1
11

1

1
111

11

11
332211

1
1

1
1

11
3

1
13

2

1
12

1

1
11

2

∂
∂

∂
∂

∂
η∂

∂
∂

∂
∂

∂
η∂

∂
∂

∂
η∂

δ

η

∂
∂
δ

(x.y)

() () () (){ }

(){ }

() (){ }

() () () () ()

() ()

() () ()

()
∫

∫

∫

∫

∫

∫

∫

Γ

+

Ω

−
+

−
+

−
+

Ω

−
+

−
+

Ω

−
+

−
+

−
+−

+

+
Ω

−
+

+
Ω

+
−
+

−
+

−
+

Ω

Γ
∂

∂
−

Ω

++

Ω

+

Ω

+++=

=Ω

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂−

Ω+

Ω

∂
∂

+
∂
∂

+
∂
∂

+

d
v

N

d
x

v

x

v

x
NPr

d
x

v

x
NPr

d
x

v

x

v

x
Pr

t

v
fN

dv
x

N

x

N

x

N

x

N

x

N

x

N
Pr

dp
x

NP
N

dv
x

N
v

x

N
v

x

N
v

t

N
N

r
n

i

r
n

r
n

r
n

i

r
n

r
n

i

r
n

r
n

r
nnr

ni

r

nj
jijijir

n

r

nj
j

i

r

nj
jr

n
jr

n
jr

n
j

i

n
12

2

1
13

3

1
12

3

1
1

2

1
12

2

1
1

1

1
12

2

1
11

1

1
121

12

12
332211

1
1

1
2

12
3

1
13

2

1
12

1

1
11

2

∂
∂

∂
∂

∂
η∂

∂
∂

∂
η∂

∂
∂

∂
∂

∂
η∂

δ

η

∂
∂
δ

(x.y)

() () () (){ }

(){ }

() (){ }

() () () () ()

() () ()

() ()

()
∫

∫

∫

∫

∫

∫

∫

Γ

+

Ω

−
+

−
+

Ω

−
+

−
+

−
+

Ω

−
+

−
+

−
+−

+

+
Ω

−
+

+
Ω

+
−
+

−
+

−
+

Ω

Γ
∂

∂
−

Ω

+

Ω

++

Ω

+++=

=Ω

∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂−

Ω+

Ω

∂
∂

+
∂
∂

+
∂
∂

+

d
v

N

d
x

v

x
NPr

d
x

v

x

v

x
NPr

d
x

v

x

v

x
Pr

t

v
fN

dv
x

N

x

N

x

N

x

N

x

N

x

N
Pr

dp
x

NP
N

dv
x

N
v

x

N
v

x

N
v

t

N
N

r
n

i

r
n

r
n

i

r
n

r
n

r
n

i

r
n

r
n

r
nnr

ni

r

nj
jijijir

n

r

nj
j

i

r

nj
jr

n
jr

n
jr

n
j

i

n
13

3

1
13

3

1
1

3

1
12

2

1
13

2

1
1

3

1
11

1

1
13

1

1
131

13

13
332211

1
1

1
3

13
3

1
13

2

1
12

1

1
11

2
∂

∂
∂
η∂

∂
∂

∂
∂

∂
η∂

∂
∂

∂
∂

∂
η∂

δ

η

∂
∂
δ

(x.y)

To complete calculation use technique presented in Section XXX.

 (x.y)

References
[Wuj1998] Wu J., Sheng-Tao Y., Bo-Nan J.,
Simulation of two-fluid flows by the least-squares finite element method using
a Continuum Surface Tension model,
Int. J. Numer. Meth. Engng. 42, 583-600, 1998.

[Bra1992] Brackbill J.U., Kothe D.B., Zemach C.,
A continuum method for modeling surface tension,
J. Comput. Phys. 100, 335-354, 1992.

[Hue1975] Huebner K.H.,
The Finite Element Method for Engineers,
Wiley, Toronto, 1975.

[Tay1981] Taylor C., Hughes T.G.,
Finite Element Programming of the Navier-Stokes Equations,
Pineridge, Swansea, 1981.

[Hin1979] Hinton E., Owen D.R.J.,
An Introduction to Finite Element Computations,
Pineridge, Swansea, 1979.

[Hua1999] Hou-Cheng Huang, Zheng-Hua Li and Asif S. Usmani,
Finite Element Analysis of Non-Newtonian Flow,
Springer-Verlang, London, 1999.

[Zie2000a] Zienkiewicz O.C. ,Taylor R.L.,
The Finite Element Method, Volume 1: The Basis (Fifth edition)
Butterworth-Heinemann, Oxford, 2000.

[Zie2000b] Zienkiewicz O.C. ,Taylor R.L.,
The Finite Element Method, Volume 2: Solid Mechanics (Fifth edition)
Butterworth-Heinemann, Oxford, 2000.

[Zie2000c] Zienkiewicz O.C. ,Taylor R.L.,
The Finite Element Method, Volume 3: Fluid Dynamics (Fifth edition)
Butterworth-Heinemann, Oxford, 2000.

[Kar2001] Hvistendahl Karlsen K., Lie K.-A., Natvig J. R., Nordhaug H. F.,
and Dahle H. K., Operator Splitting Methods for Systems of Convection–
Diffusion equations: Nonlinear Error Mechanisms and Correction Strategies,
Journal of Computational Physics 173, 636–663 (2001).

[Tur1996] Turek S., A comparative study of time-stepping techniques for the
incompressible Navier-Stokes equations: From fully implicit non-linear
schemes to semi-implicit projection methods. Int. J. Num. Meth. In Fluids, 22,
pp.987-1011, 1996.

[Bur1985] Burden R.L., Faires J.D., Numerical Analysis, Third Edition, PWS-
Kent, Boston, 1985.

[Str1999] Stręk T. Zastosowanie Maple do wyznaczania wielomianów
wyŜszych stopni dla trójkątnych elementów skończonych, Pro Dialog ,
8, 1999, p. 63-68.

[Sil1969] Silvester P. Higher-Order Polynomial Triangular Finite Elements for
Potential Problems, Int. J. Eng. Sci. 7, pp. 849-861, 1996.

[Lan0000] Lantangen H.P., Mardal K.-A., Winther R., Numerical methods for
Incompressible Viscous Flow, NO INFORMATION !!!

