
 
METODA ELEMENTÓW SKO ŃCZONYCH  
 
 
X. The Finite Element Method 
 
 
X.1. Introduction 
 
 
Many CFD practitioners prefer finite volume methods because the derivation 
of the discrete equations is based directly on the underlying physical 
principles, thus resulting in “physically sound” schemes. From a mathematical 
point of view, finite volume, difference, and element methods are closely 
related, and it is difficult to decide that one approach is superior to the others; 
these spatial discretization methods have different advantages and 
disadvantages.  



Today the Finite Element Method (FEM) has been widely employed 
in solving field problems arising in modern industrial practices. The text in 
this chapter (section) is short introduction to the application of the FEM to the 
analysis of fluid flow which is a very common phenomenon in many 
processes of manufacturing and engineering. 

In this chapter / section we shall introduce the reader to a finite 
element treatment of the equations of motion for various problems of fluid 
mechanics. Much of the activity in fluid mechanics has however pursued a 
finite difference formulation and more recently a derivative of this known as 
the finite volume technique. Competition between the newcomer of finite 
elements and established techniques of finite differences have appeared on the 
surface and led to a much slower adoption of the finite element process in 
fluid mechanics than in structures. The reasons for this are perhaps simple. In 
solid mechanics or structural problems, the treatment of continua arises only 
on special occasions. The engineer often dealing with structures composed of 
bar-like elements does not need to solve continuum problems. Thus his 
interest has focused on such continua only in more recent times. In fluid 



mechanics, practically all situations of flow require a two or three dimensional 
treatment and here approximation was frequently required. This accounts for 
the early use of finite differences in the 1950s before the finite element 
process was made available. However, as it was pointed out in book 
[Zie2000a], there are many advantages of using the finite element process. 
This not only allows a fully unstructured and arbitrary domain subdivision to 
be used but also provides an approximation which in self-adjoint problems is 
always superior to or at least equal to that provided by finite differences. 

One advantage of the finite element method over finite difference 
methods is the relative easy with which the boundary conditions of the 
problem are handled [Bur1985]. Many physical problems have boundary 
conditions involving derivatives and the boundary of the region is irregularly 
shaped. Boundary conditions of this type are very difficult to handle using 
finite difference techniques, since each boundary conditions involving a 
derivative must be approximated by a difference quotient at the grid points, 
and irregular shaping of the boundary makes placing the grid points difficult. 



The construction procedure in the FEM is independent of the particular 
boundary conditions of the problem. 
 
 
X.2. The method of weighted residuals (Galerkin's method) 
 
Some physical problems can be stated directly in the frame of variational 
principle which consists of determining the function which makes a certain 
integral statement called functional stationary. However the form of the 
variational principle is not always obvious and such a principle does not exist 
for many continuum problems. 
 As an alternative to solve such differential equations we may use a 
variety of weighted residual methods. Weighted residual methods are 
numerical techniques which can be used to solve a single or set of partial 
differential equations. Consider such a set in domain Ω with boundary δΩ=Γ, 
where u  is the exact solution and may represent a single variable or a column 



vector of variables. where at least the first order gradient in the variable is 
prescribed. 

Applying the method of weighted residuals involves basically two 
steps. The first step is to assume the general functional behavior of the 
dependent field variable in some way so as to approximately satisfy the given 
differential equation and boundary conditions. Substitution of this 
approximation into the original differential equation and boundary conditions 
then results in some error called a residual. This residual is required to vanish 
in some average sense over the entrie solution domain. The second step is to 
solve the equation (or equations) resulting from the first step and thereby 
specialize the general functional form to a particular function, which then 
becomes the approximate solution sought. According to Galerkin's method, 
the weighting functions are chosen to be the same as the approximating 
functions. 
 Let us consider differential equation 
 

( ) fuL =  (x.y) 



 
defined within a domain Ω and with boundary conditions specified at the 
boundary of Γ.  
 An operator L  is said to be linear if and only if it satisfies the relation 
 

( ) ( ) ( )vbLuaLvbuaL +=⋅+⋅  (x.y) 
 
for any scalars a  and b  and dependent variables u  and v . When an operator 
does not satisfy the above condition it is said to be nonlinear. The function u  
(i.e. solution) is not only required to satisfy the operator equation, it is also 
required to satisfy the boundary conditions associated with the operator. 

In the weighted-residual method the solution u  is approximated by 
expressions u  of the form 
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where jS  are trial functions, and 0S  must satisfy all the specified boundary 

conditions ( 00 =S  if all the specified boundary conditions are homogeneous) 

of the problem, and iS  must satisfy the following conditions: 

• jS  should be such that ( )jSL  is well defined and nonzero, i.e. 

sufficiently differentiable; 
• jS  must satisfy at least the homogeneous form of the essential 

boundary conditions of the problem; 
• for any N , the set { }N,...,j,S j 21=  is linearly independent. 

 
 
We begin by introducing the error, or residual, ΩR  in the approximation (by 
substitution of the approximation u  into the operator equation) which is 
defined by  
 



( ) fuLR −=Ω  (x.y) 
 
where u  contains trial functions and satisfies the Dirichlet boundary 
conditions of 0uu =  at Γ⊆Γ1 . If the residual is smaller the approximation is 

better. It should be noted that ΩR  is a function of position in Ω. Now we 
attempt to reduce this residual as close to zero as possible. If we have  
 

0=Ω∫
Ω

ΩdRTi  (x.y) 

 
where M1,2,...,i ,Ti =  is a set of arbitrary functions and ∞→M , then it can 

be said that the residual ΩR  vanishes. Here iT  are called weighting functions 

which, in general, are not the same as the approximation (trial) functions iS . 
Expanding above equation we have 
 



( )( ) 0=Ω−∫
Ω

dfuLTi . (x.y) 

 
A function u  that satisfies above equation for every function iT  in Ω is a 
weak solution of the differential equation, whereas the strong solution u  
satisfies the differential equation at every point of Ω. 
 When the operator L  is linear above equation can be simplified to the 
form  
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or 
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where 
 

( )∫
Ω

Ω= dSLTA jiij  (x.y) 

 
and 
 

( )( )∫
Ω

Ω−= dSLfTf ii 0 . (x.y) 

 
Note that the coefficients of matrix A  is not symmetric jiij AA ≠ . 



 The weighted-residual method (when ii ST ≠ ) is also sometimes 

referred to as the Petrov-Galerkin method. For different choices of iT  the 
method is known by different names. We outline below the most frequently 
used methods. 

The Galerkin method. For ii ST =  the weighted-residual method is 
known as the Galerkin method. When the operator is a linear differential 
operator of even order, the Galerkin method reduces to the Ritz method. In 
this case the resulting matrix will be symmetric because half of the 
differentiation can be transformed to the weight functions. 

The least-squares method. The least-squares methods seeks a solution 

in the form (XXX) ∑
=
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0  and determines the constants ju  by 

minimizing the integral of the square of the residual 
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A comparison of Eq.(XXX) with Eq.(XXX) shows that 
i

i u

R
T

∂
∂= Ω . If L  is a 

linear operator Eq.(XXX) becomes 
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which yields a symmetric matrix but requires the same order of differentition 
as the operator equation.  

The collocation method. The collocation method seeks approximate 
solution u  by requiring the residual ( )ux,RR ΩΩ =  in the equation to be 

identically to zero at N  selected points ix , N,...,,i 21=  in the domain Ω 
 

( ) 0=Ω ji u,R x . (x.y) 
 
The selection of the points ix  is crucial in obtaining a well conditioned system 
of equations and ultimately in obtaining an accurate solution. The collocation 

points can be shown to be a special case of Eq. (XXX) 0=Ω∫
Ω

ΩdRTi  for 

( )iiT xx −= δ , where ( )xδ  is the Dirac delta function 
 



( ) ( ) ( )ξξδ fdf =Ω−∫
Ω

xx . (x.y) 

 
 The Courant method. To so-called Courant method combines the basic 
concepts of the Ritz method and the least-squares method (for linear operator). 
The method seeks approximate solution u  by minimizing the modified 
quadratic functional  
 

( ) ( ) ( ) 2

2
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Where ( )uI  is the quadratic functional associated with ( ) fuL = , when L  is 

linear, and α is the penalty parameter (preassigned). Obviously the statement 
make sense only for operator equation that admit functional formulation.  
 
 



X.3. Time discretization schemes 
 
In time-dependent (unsteady) problems, the undetermined unknown 
parameters ju  are assumed to be functions of time, while the trial functions 

jS  are assumed to depend on spatial coordinates. This leads to two stages of 

solution, both of which employ approximation methods. In the solution of 
unsteady problems we can first consider the spatial approximation and the 
time (or timelike) approximation next. Such a strategy is commonly known as 
semidiscrete approximation in space. The spatial discretisation leave us with 
the first order ordinary differential equations with respect to time. There are 
numerous ways of accomplishing the discretisation of the time domain. 

The first order system of equations  
 

rwKwM =+   &  (x.1) 
 



where 
t∂

∂=
• w
w  needs to be discretised in time. If we consider only single PDE 

we have uw =  else w  is set of unknown parameters of few variables (e.g. 
velocity, temperature, pressure). The most commonly used method for such a 
system is the generalized mid-point or trapezoidal family of methods. The 
trapezoidal method applied to can be written as follows 
 

( ) ( ) 1111111 +++++++ =+ nnnnnnn  t, t, rwwKwwM &  (x.2) 
 
and 
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Substituting (x.3) in (x.2) we obtain 
 



1111
1 22

++++
+ +







 +=






 + nnnnnn
n

tt
rMwwwK

M
&

δδ
 (x.4) 

 
The method involves the calculation of the derivatives on the right hand side. 
Here ( )111 , +++ = nnn twMM . The generalized mid-point family of methods is 
written as 
 

( ) ( ) ( )αααααααα ++++++++ =+ nnnnnnnn t, t, t, wrwwKwwM &  (x.5) 
 
where  
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Substituting (x.6)-(x.8) into (x.5) we obtain 
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No calculation of derivatives is necessary for this method. By changing the 
values of α  from 0 to 1, different members of this family of methods are 
identified. We can obtain a number of well-known difference schemes by 
choosing the value of α: 
 
α =0 forward difference (Euler) scheme (conditionally stable); 
α =1/2 midpoint rule (Crank-Nicolson) scheme (unconditionally stable); 
α =2/3 Galerkin method (unconditionally stable); 
α =1 backward difference (backward Euler ) scheme (conditionally stable). 



 
All, except the forward Euler of the above schemes are implicit (they require 
matrix inversion for solution). As far as accuracy is concerned the midpoint 
rule is to be preferred. The generalized midpoint rule conserves linear and 
quadratic quantities, while the trapezoidal rule conserves only the linear ones. 

It must be pointed out that one can except better results if smaller 
steps are used. In practice one wishes to take as large a time step as possible to 
cut down the computational expense. Larger time steps, in addition to 
decreasing the accuracy of the solution, can introduce some unwanted, 
numerically induced oscillations into the solution. Thus an estimate of an 
upper bound on time step proves to be very useful.  
 The system of equations for incompressible flow is non-linear and 
therefore an iterative solution is necessary within one time step. The fully 
discretised using the mentioned in this chapter generalized mid-point family of 
methods given in Eq.(xxxxxxx) may be written as 
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where p  represents the iteration number. Above equation may be solved until 

the norm p
n

p
n 1

1
1 +

+
+ − ww  falls below an acceptable tolerance. To speed up 

convergence within one time step the Newton-Raphson method may be used 
[Hua1999]. 
 
 
 
X.4. Overview of the finite element method 
 
There is an extensive literature on finite elements, both for theory and 
applications. Popular books include those by Huebner [Hue1975] (a definitive 
work from an engineering perspective), Hinton and Owen [Hin1979], 
Zienkiewicz and Taylor [Zie2000a, Zie2000b, Zie2000c]. 



In this chapter, we give a sketch of the finite element procedures. This 
sketch introduces important concepts of local approximation functions (linear 
and quadratic), the Galerkin method, treatment of boundary conditions, and 
assembly and solution of global matrices. 
 The governing equations of given problem must first be discrtetised 
spatially to obtain the finite element equations. The conventional Galerkin 
weighted residual technique discussed in previous section/chapter is the most 
powerful and general method available to achieve finite element spatial 
discretisation for any set of differential equations. 
 
 
X.5. Local approximations  
 
In the finite element method, the solution u  of a PDE is approximated by low-
order polynomials on local elements. The local elements constitute the mesh; 
typical elements used are triangles and quadrilaterals in 2D, and tetrahedra and 
hexahedra in 3D.  



 

 
Figure 3.1: 2D triangular mesh. 

 
To give a simple example, consider a triangular mesh in 2D (Figure 3.1). We 
concentrate on the single triangle with corner nodes { }k,j,i , and let the values 



of u  at the nodes be { }kji u,u,u . We approximate u  within the local element 

by  
 

( ) ( ) ( )[ ] [ ]Tkjikji u,u,uy,xN,y,xN,y,xNu ⋅=  (x.y) 

 
where ( ) ( ) ( ){ }y,xN,y,xN,y,xN kji  are interpolation functions. In the simplest 

case, these are linear polynomials such that  
 

( ) lpppl y,xN δ=  (x.y) 
 
where lpδ  is the Kronecker symbol.  

For example, if the local element is the triangle with nodes at 
( ) ( ) ( )110100 ,,,,, , the three linear interpolation functions are  
 

xN −=11 , yxN −=2 , yN =3  (x.y) 



 
and, given nodal values ( )kji u,u,u , the linear approximation to u  in the 

element is  
 

( ) ( ) kji yuuyxuxu +−+−= 1 . (x.y) 
 

We can use (for example) the following element types: 
 

 

 
 

3-node triangle, linear approximation 

 

 
 

6-node triangle, quadratic 
approximation 

  



 
 

4-node quadrilateral, bi-linear 
approximation 

 
 

8-node quadrilateral, bi-quadratic 
approximation (serendipity element) 

 
 

 
 

4-node tetrahedron, linear 
approximation 

 

 
 

10-node tetrahedron, quadratic 
approximation 

  



 
 

8-node hexahedron, tri-linear 
approximation 

 
 

20-node hexahedron, tri-quadratic 
approximation (serendipity element) 

 
Figures X. Examples of finite element. 
 
X.6. Calculation of the nodal values 
 
X.5.1. Solution of steady problems 
 
The nodal values are pointwise approximations to the solution of a system of 
PDEs  



 
( ) fuL =  (x.y) 

 
defined within a domain Ω and with boundary conditions specified at the 
boundary of Γ. The boundary conditions typically specify and/or its 
derivatives. If u  is specified on the boundary, it is known as a Dirichlet 
boundary condition. A natural boundary condition specifies the value of terms 
arising from integration by parts, such as the flux. The PDE system might be a 
well-specified problem in its own right, or it might result from an algorithm 
applied to a more complex problem. Domain Ω can be in 2 or 3 dimensions, 
whilst both L and u  can have multiple components. In the above, f  

represents a forcing term for the PDEs, and ( )uL  typically includes 
derivatives of u  up to second order.  
 We represent the solution ( )xu  of the PDE system as follows:  
 

( ) ( )∑= xSuxu ii  (x.y) 



 
The PDE will be satisfied in the weak sense provided  
 

( ) ( ){ }∫
Ω

=− 0dVfuLxT j , eN,...,j 1=  (x.y) 

 
for a given set of test functions jT . If L  has multiple components, then T  has 

a corresponding number. In the Galerkin method as implemented in many 
codes, the shape functions iS  and the test functions jT  are identical. However, 

since the shape functions do not have second derivatives everywhere, we 
usually integrate some terms by parts prior to the substitution of the shape 
function representation for u . In the finite element method the shape function 

iS  for each node is continuous and identically zero outside the elements of 

which the node is a part. Within each of those elements, iS  is a low-order 
polynomial which takes the value one at node j and zero at all other nodes.  



To accomplish the integration by parts, we symbolically decompose 
the operator L  into first- and second-order operators  
 

21 LLL ∇+=  (x.y) 
 
Here both 1L  and 2L  are first-order operators. 2L  may be vector or tensor 
valued, with possibly a reduction operation when the grad is applied. The 
weak form of the PDE thus gives  
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where Ω∂  is the boundary and n  is the unit outward normal. Using this 
integrated form of the PDE, it is now possible to approximate u  using the 
shape functions. This process is known as assembly, and the end result is a 
finite dimensional system over the eN nodes:  
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where  
 

( ) ( ) dVSSLdVSLSK ijjiij ∇−= ∫ ∫
Ω Ω

21  (x.y) 

 
and 
 



( ) ∫∫
ΩΩ∂

+−= fdVSdSuLSr iii 2n . (x.y) 

 
The matrix K  is called the stiffness or global matrix, and vector r  is called 
the load vector. 



 
X.6.2. Solution of time dependent problems 
 
X.6.2.1. First strategy 
 
Let us consider time-dependent PDE equation  
 

( ) fuL
t

u =+
∂
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 (x.y) 

 
defined within a domain Ω and with boundary conditions specified at the 
boundary of Γ. ( )uL  typically includes derivatives of u  up to second order.  

The numerical strategies are based on discretizing governing equations 
first in time, to get a set of simpler partial differential equations, and then 
discretizing the time-discrete equations in space. There are two main 
discretizing in time schemes: backward Euler and Crank−Nicolson. 

 



The backward Euler method uses the algorithm 
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which is equivalent to  
 

( ) ( )fututLu nnn +=+ ++ δδ 11 . (x.y) 
 
In the heart of the algorithm, the equation (x.y) is assembled and solved at 
each timestep. 



The Crank−Nicolson approximation uses the algorithm: 
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Next define nn uuu −= +1δ  and verify that uδ  satisfies 
 

( ) ( ) f tutLuL
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The above equation is assembled and solved for uδ  at each timestep. 

 
  



Let us consider the backward Euler approximation with the finite element 
method 
 

( ) ( )fututLu nnn +=+ ++ δδ 11 . (x.y) 
 
The PDE will be satisfied in the weak sense provided  
 

( ) ( ) ( ){ }∫
Ω

++ =+−+ 011 dVfututLuxT nnnj δδ , eN,...,j 1=  (x.y) 

 
for a given set of test functions jT . To accomplish the integration by parts, we 

symbolically decompose the operator L  into first- and second-order operators  
 

21 LLL ∇+=  (x.y) 
 



The weak form of the PDE thus gives  
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The end result is a finite dimensional system over the eN nodes:  
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X.6.2.2. Second strategy 
 
Strategies for time-dependent problems presented in previous sections were 
based on discretizing governing equations first in time and then discretizing 
the time-discrete equations in space. 
 One can write finite element shape functions to include the time 
variable and thus incorporate it into the general finite element method 
procedure [Hua1999]. However, due to the conceptual simplicity of the time 
dimension simpler finite difference approximations presented in the previous 
section are generally favoured. Most schemes currently used are constructed in 
this way. We can also discretizing governing equations first in space.  



Let us consider time-dependent PDE equation  
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defined within a domain Ω and with boundary conditions specified at the 
boundary of Γ. ( )uL  typically includes derivatives of u  up to second order.  

The main numerical strategies are based on discretizing governing 
equations first in time, to get a set of simpler partial differential equations, and 
then discretizing the time-discrete equations in space.  

The PDE will be satisfied in the weak sense provided  
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for a given set of test functions jT .  



To accomplish the integration by parts, we symbolically decompose the 
operator L  into first- and second-order operators 21 LLL ∇+= . Here both 1L  

and 2L  are first-order operators. The weak form of the PDE thus gives  
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The end result is a finite dimensional system over the eN nodes:  
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and 
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The matrix M  is called the mass matrix. 
 
 



X.7. Assembly and sub-assembly  
 
Although the components of K  are written as integrals over the whole mesh, 
they are in fact zero everywhere except on elements containing both node i 
and node j. Nodes that have no element in common have a zero entry; hence 
K  is a sparse matrix. Assembly in FEM is carried out element by element. 
Each pair of nodes of the element generates a component to be added to K . 
These components are added into an element matrix, prior to being added into 
the global matrix. In this process, subsets of the global vectors required as data 
for assembly, including the coordinates, are selected and sorted into a standard 
nodal order for the element. This is referred to as the local level; the vectors 
are called local vectors. The integrals making up K  have to be evaluated, and 
this is done by Gauss quadrature. Standard interpolation formulae are used to 
calculate the quantities concerned at quadrature points, and weighted sums of 
these values are used to approximate the integral.  
 
 



X.8. Boundary conditions  
 
The finite element method distinguishes between essential and natural 
boundary conditions:  

a) essential (Dirichlet)  
 

( ) guG =  (x.y) 
 
where the value of variable is prescribed; 

b) natural (Neumann) 
 

( ) suS =  (x.y) 
 



As an introduction to these concepts, consider the weak form of the 
left-hand side of Laplace's equation:  
 

∫∫ ∫
Ω∂Ω Ω

∇⋅+∇⋅∇−=∇ dS uSVd uSdV uS iii n2  (x.y) 

 
The last term is an integral over the boundary of the normal derivative (or 
flux). This is called a natural boundary condition; the boundary integrands 
represent a physical quantity (for example, flux in a diffusion problem, or 
stress in a linear elasticity problem). The condition is implemented by 
substituting directly if the integrand is known, or by substituting an expression 
involving unknowns. Natural boundary conditions are specified at the time 
that the PDE problem is specified. On the other hand, an absolute specification 

ii cu =  at some set of boundary nodes is called an essential boundary 
condition. This is enforced by including it in the set of equations, replacing the 
equation which had been formed by using iS  as a test function.  



To illustrate this point, suppose that node 3 is a boundary node with 
value Uu =3 . The third row of the matrix is independent of other nodal values 
and is given by  
 

[ ] [ ] Uu,...,u,u,u,...,,,, N =⋅ 32100100  (x.y) 
 
Incorporation of this boundary condition into the matrix system gives the new 
system  
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If the matrix K  is symmetric it is necessary to do a further elimination to 
regain symmetry:  
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To summarise the discussion so far, essential boundary conditions are 
implemented by modification of the global matrix and right-hand side (RHS) 
vector, whilst natural boundary conditions are often accounted for in the RHS 
vector alone. These concepts are so important, however, that we now provide 
a more detailed commentary.  



In the Galerkin procedure, a term such as ExpDm  (where mD  denotes 

partial differentiation with respect to mx , m could be i or j, and Exp  might or 
might not involve suffices, an unknown or another differentiation) is 
multiplied by a test function T  over the region Ω  with boundary Ω∂ . For all 
second-order terms and some first-order terms, the integration is done by 
parts. This gives:  
 

( )∫ ∫∫
Ω Ω∂Ω

+−= dS Expn TdV ExpTDdV ExpD T mmm . (x.y) 

 
The application of boundary conditions in the finite element method 

requires either that some information is used to replace the integrand resulting 
from second-order terms, when T  is non-zero there, or that for such test 
functions the whole equation is replaced by an essential condition. So when 
we implements such terms, we adds only the second integral into the equations 
- either to the sparse matrix or the right-hand side vector.  
 



The boundary integrals often have physical significance, and it is best to try to 
formulate the equations to take advantage of this. In fact, many second-order 
equations correspond to one of the following patterns:  

• rate of change of heat with time = div (flux),  
• change of momentum with time = div (stress). 

 
For steady equations the rates would be zero. The divergences are integrated 
by parts, and the boundary integrands will be the normal components of either 
the flux or the stress. On interior boundaries, integrals are generated on each 
side, and the net integrand is the difference.  
 
There are three possible specifications on any particular boundary.  
1. We can assert that the integrand (flux, stress, ...) is zero on an outside 
boundary or the integrand is continuous on an interior boundary.  
2. We can set the boundary integral, by including the appropriate value, which 
will be added to the left-hand side.  



3. We can specify a Dirichlet condition, in which case the equation, with its 
boundary integrals, will be overwritten.  
 
 



X.9. The solution stage 
 
The finite element solution is obtained by solving  
 

∑
=

=
N

j
ijij ruK

1

, N,...,i 1=  (x.y) 

 
where the right-hand side is made up of boundary integrals from natural 
boundary conditions, terms from essential boundary conditions and boundary 
integrals. The matrix system is invariably large and sparse, and often 
symmetric positive definite. To solve the matrix system we can use both direct 
and indirect.  
The above description illustrates concepts underlying the use of finite 
elements method.  
 
 



X.10. Shape functions in local coordinate system 
 
X.10.1. Basic two-dimensional C(0) rectangular elements 
 
 The shape functions for the four noded rectangular element in local 
coordinate system can be abbreviated to 

Ni i i= + +1

4
1 1( )( )ξ ξ η η

 
(x.y) 

where 
 
 

i 1 2 3 4 
ξ i  

-1 1 1 -1 

ηi  
-1 -1 1 1 

 
 



I ξ i  ηi  
1  -1 -1 
2 1 -1 
3 1 1 
4 -1 1 
 
 
The shape functions for the eight noded rectangular element can be 
summarised: 
for corner nodes 
 

Ni i i i i= + + + −1

4
1 1 1( )( )( )ξ ξ η η ξ ξ η η

 
(x.y) 

 
for midside nodes 0=iξ   
 



Ni i= − +1

2
1 12( )( )ξ η η

 
(x.y) 

 
for midside nodes 0=iη   
 

Ni i= + −1

2
1 1 2( )( )ξ ξ η

 
(x.y) 

 
where 
 
 

i 1 2 3 4 5 6 7 8 
ξ i  

-1 0 1 1 1 0 -1 -1 

ηi  
-1 -1 -1 0 1 1 1 0 

 



 
i ξ i  ηi  
1 -1 -1 
2 0 -1 
3 1 -1 
4 1 0 
5 1 1 
6 0 1 
7 -1 1 
8 -1 0 

 
 
 



X.10.2. Isoparametric elements 
 
 We can generalise these elements by using the isoparametric 
representation. Consider an isoparametric formulation for an m-node element. 
We can express the geometry of such elements using the nodal coordinates x 
and y of element and the shape functions of element described above. Thus at 
any point within an element the Cartesian coordinates may be obtained from 
the expressions:  
 

x N xi
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m

i( , ) ( , )ξ η ξ η=
=
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1  
(x.y) 

and 

y N yi
i

m

i( , ) ( , )ξ η ξ η=
=
∑

1  
(x.y) 

 
 



The Cartesian derivative of any function f defined over the element using the 
expression: 
 

f N fi
i

m

i( , ) ( , )ξ η ξ η=
=
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1  
(x.y) 

 
may be obtained by the chain rule of differentiation 
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The terms 
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can be obtained using the following procedure. First we evaluate the matrix 
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which is termed the Jacobian matrix J. The inverse of the Jacobian is then 
evaluated 
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An element area of the element is given as 



 
ηξdd dxdy Jdet=  (x.y) 

 
 
For an isoparametric element we have 
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X.10.3. Numerical integration  
 
 We can adopt a numerical integration procedure to evaluate such 
integrals 
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The r-point Gauss-Legendre integration rule have the form: 
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j
iji gwwdd g

1 1

1

1

1

1

),(),( ηξηξηξ
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r ξ i  

wi  
1 0.00000 2.00000 
2 0.577530 

-0.577530 
1.00000 
1.00000 

3 0.00000 
0.774597 
-0.774597 

8/9 
5/9 
5/9 

4 0.861136 
-0.861136 
0.339981 
-0.339981 

0.347855 
0.347855 
0.652145 
0.652145 

 
Note that r-point rule can integrate exactly polynomial functions of degree 2r-
1 or less. This type of formulation enables us to use elements of the very 
general nature. 



 
 
X.11. Shape functions for triangular and tetrahedral element family  
 
 
X.11.1. Triangular element family 
 
The advantage of an arbitrary triangular shape in approximating to any 
boundary shape has been amply demonstrated in [Zie2000a]. The number of 
nodes in each member of the family is now such that a complete polynomial 
expansion, of the order needed for interelement compatibility, is ensured. This 
follows by comparison with the Pascal triangle in which we see the number of 
nodes coincides exactly with the number of polynomial terms required. Direct 
generation of shape functions will be preferred - and indeed will be shown to 
be particularly easy. Before proceeding further it is useful to define a special 
set of normalized coordinates for a triangle (area coordinates) [Zie200a]. 



While Cartesian directions parallel to the sides of a rectangle were a 
natural choice for that shape, in the triangle these are not convenient. A new 
set of coordinates, 321 L,L,L  for a triangle 1,2,3 is defined by the following 
linear relation between these and the Cartesian system: 
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To every set, 321 L,L,L  (which are not independent, but are related by the third 
equation), there corresponds a unique set of Cartesian coordinates.  



At point j: 
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L iji 0

1
δ  for 321 ,,j = .  

 
Solving Eq. (xxxx) gives 
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in which 
 

33

22

11

1

1

1

2
1

yx

yx

yx

det=∆  (x.y) 

 
and 



 

23321 yxyxa −= , 321 yyb −= , 231 xxc −=  (x.y) 
 
etc., with cyclic rotation of indices 1,2 and 3. 
 Relation between the Cartesian coordinates and area coordinates 
implicates that geometric place for iL , 321 ,,i = , are lines parallel to edge 

kj −  ( kji ≠≠ ) with 0=iL . 
For the first element of the triangular series (linear element with three 

nodes placed at the vertices of triangle) the shape functions are simply the area 
coordinates. Thus 
 

ii LN =  (x.y) 
 
for 321 ,,i = . This is obvious as each individually gives unity at one node i , 
zero at others, and varies linearly everywhere. 



 To derive shape functions for other elements a simple recurrence 
relation can be derived. However, it is very simple to write an arbitrary 
triangle of order m . We can use Silvester’s formula [Sil1969] to generate 
shape functions of order m : 
 

( ) ( ) ( ) ( )321321 LPLPLPL,L,LN cbaabc =  (x.y) 
 
where 
 

( ) 10 =iLP  

( ) ∏
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i
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(x.y) 

 
and 
 

mcba =++ . (x.y) 



 
Shape functions are generated for all nodes, all sequences of ( )c,b,a  which 
satisfies mcba =++ . Indices c,b,a  in above equations denotes node 
position in triangle. The area coordinates of this node we can evaluate using  
 

m

c
L,

m

b
L,

m

a
L === 321 . (x.y) 

 
Number of nodes of shape function (interpolating polynomial) of order m  is 
equal to ( )( ) 221 ++ mm . For example, if we would like to evaluate shape 
functions of second order we have to calculate following expressions  
 

011101110002020200 N,N,N,N,N,N . (x.y) 
 
It is easy to verify that corner nodes shape functions are  
 



( ) ( ) ( )121212 330022202011200 −=−=−= LLN,LLN,LLN  (x.y) 
 
And mid-sides nodes shape functions are as follows 
 

320113110121110 444 LLN,LLN,LLN === . (x.y) 
 
We can notice that in high-order shape functions in all cases three nodes of 
triangle element are placed at vertices of triangle and others on boundary or 
inside the triangle.  

When element matrices have to be evaluated it will follow that we are 
faced with integration of quantities defined in terms of area coordinates over 
the triangular region. It is useful to note in this context the following exact 
integration expression 
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In paper [Str1999] procedure automatically generating shape functions 

using symbolic computations has been presented. 
 
 



X.11.2. Tetrahedral element family 
 
Firstly, once again complete polynomials in three coordinates are achieved at 
each stage. Secondly, as faces are divided in a manner identical with that of 
the previous triangles, the same order of polynomial in two coordinates in the 
plane of the face is achieved and element compatibility ensured [Zie2000a]. 

Once again special coordinates 4321 L,L,L,L  for a tetrahedral 1,2,3,4 
are introduced defined by: 
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Solving Eq. (xxxx) gives 
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For the first element of the triangular series (linear element with three 
nodes placed at the vertices of triangle) the shape functions are simply the area 
coordinates. Thus 
 

ii LN =  (x.y) 
 
for 4321 ,,,i = . This is obvious as each individually gives unity at one node i , 
zero at others, and varies linearly everywhere. 
 We can use again Silvester’s formula [Sil1969] to generate shape 
functions of order m : 
 

( ) ( ) ( ) ( ) ( )43214321 LPLPLPLPL,L,L,LN dcbaabcd =  (x.y) 
 
where 
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and 
 

mdcba =+++ . (x.y) 
 
Shape functions are generated for all nodes, all sequences of ( )c,b,a  which 
satisfies mdcba =+++ . Indices d,c,b,a  in above equations denotes node 
position in triangle. The area coordinates of this node we can evaluate using  
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Number of nodes of shape function (interpolating polynomial) of order m  is 
equal to ( )( )( ) 6321 +++ mmm . For example, if we would like to evaluate 
shape functions of second order we have to calculate following expressions  
 

0002002002002000 N,N,N,N  
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It is easy to verify that corner nodes shape functions are  
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And mid-sides nodes shape functions are as follows 
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The following exact integration expression is valid 
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X.12. Finite element model of non-isothermal flow 
 
 
In order to demonstrate temporal descrtization we use equation for Newtonian 
three dimensional flow. Beginning with the dimensionless incompressible 
Navier-Stokes equations 
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for 321 ,,k =  (three dimensional problem) and the continuity equation (the 
conservation of mass) 
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For incompressible flow under non-isothermal conditions, the energy 
conservation equation must also be included in the formulation 
 

Φ+∇=
∂
∂+

∂
∂+

∂
∂+

∂
∂ η PrEcT

x

T
v

x

T
v

x

T
v

t

T 2

3
3

2
2

1
1 . 

(5.8) 

 
We have to notice that considered problem is non-linear. If we linearize the 
governing equations by approximating the nonlinear terms (e.g. convective 
terms) we can solve the set of equations using any of iterative scheme. Using 
naïve linearizing method the equations can be rewritten as 
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(5.8) 

 
where kv~ , for 321 ,,k =  denotes the value of velocity components from 
previous iteration step. To achieve better approximation and convergence of 
iterative process we can use one of the method described in previous Chapter.  

The following shape functions will be used to approximate the field 
variables 
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Applying the Galerkin weighted residual procedure to our governing equations 
using the above shape functions we obtain the Galerkin finite element method 
(GFEM) equations discretized in space. This is illustrated in the following 
lines. 
 
Substitution of (x.y) into the governing equation yields 
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and 
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In the continuity equation we must use the pressure shape functions iNP  for 
the weighting functions as the continuity equation will only be enforced at the 
pressure modes 
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By applying integration by parts to the integral expression of equations, we 
can obtain expressions containing lower-order derivatives, and hence we can 
use approximating functions with lower-order interelement continuity. For all 
second-order terms and some first-order terms, the integration is done by 
parts. This gives:  
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∂=  and Expr  is expression. 

When integration by parts is possible, it also offers a convenient way to 
introduce the natural boundary conditions that must be satisfied on some 
portion of the boundary. Although the boundary terms containing the natural 
boundary conditions appear in the equations for each element, in the assembly 



of the element equations only the boundary elements give nonvanishing 
contributions. 
 
For second order derivative using formula (XXX) we obtain 
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When integration by parts is applied to the momentum equation we obtain 
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and when we use it for the energy conservation equation this gives 
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We may write the final set of  the GFEM equations discretized in 

space in a fully coupled form as follows 
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X.13. Finite element model of non-Newtonian flow 
 
In this chapter a method for analyzing transient non-Newtonian flow is 
presented. We begin with the Navier-Stokes equation for non-Newtonian 
fluids represented by conservation of momentum  
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and conservation of mass for incompressible fluid 
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To solve transient flow of non-Newtonian fluids the above equations 

are linearized. Let r denote the number of linearization iterations and the 



superscript n denotes the previous time step and n+1 denotes the current time 
step. The linearization is carried out as follows: 
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Rearranging terms we obtain: 
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In the above: 
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The governing equations for non-Newtonian flow summarized above 

must first be discrtetized in space. The following shape functions will be used 
to approximate the field variables 
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Due to time step process and iteration technique applied in algorithm we have 
to use shape functions with additional indexes. 
 
Substitution of (x.y) into the virtual work equation yields 
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By applying integration by parts to the integral expression of equations, we 
can obtain following expressions containing lower-order derivatives 
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To complete calculation use technique presented in Section XXX. 
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