

Time-stepping techniques for the incompressible Navier-Stokes equations

Strategies and methods for Computational Fluid Dynamics

Introduction

A great deal of computational research has been undertaken and published in the
field of Computational Fluid Dynamics (CFD) since the advent of the digital
computer. Before 1970, the Finite Difference Method (FDM) was almost
universally used as a computer based numerical method in modeling fluid
dynamics process [xyz0000]. Since then there has been a revolution in the general
area of mathematical modeling. Highly sophicticated and detailed analysis of many
engineering problems has become possible. However, it can be argued that the last
three decades have in many ways belonged to the Finite Element Method (FEM) as
the method of choice among the currently available numerical methods for solving
mathematical equations [Hue1975, Hin1979]. Fluid dynamics being one of the
oldest branches of physics, has consequently been one of the main arenas of
activity for researchers and practitioners of FEM. Despite the continued use of
FDM and related techniques for routine fluid dynamics problems, FEM is
increasingly the preferred numerical method for analysis of the most complex types
of flow problems with unrivalled accuracy [Hua1999].

The vast majority of CFD related research has concentrated on
compressible or incompressible Newtonian fluids flow [Zie2000c, Tay1981]. Such
fluids have a constant viscosity which is independent of the velocity gradient,
temperature or the other quantities. This mean that the stress in Newtonian fluids is
proportional to the rate of shear. There exist however, a fairly large category of
fluids for which the viscosity is not independent of the rate shear and these fluids
are referred to as non-Newtonian. Exact solutions for non-Newtonian flows are
practically impossible. The necessitates the use of numerical methods for obtaining
approximate solutions to most non-Newtonian flow problems.

Efficient and reliable numerical solution of the incompressible Navier-
Stokes equations for industrial flow is extremely challenging. Very rapid changes
in the velocity field may take place in thin boundary layers close to solid walls.
Complex geometries can also lead to rapid local changes in the velocity. Locally
refined grids, preferably in combination with error estimation and automatic grid
adaption, are hence a key ingredient in robust methods. Most implicit solution
methods for the Navier-Stokes equations end up with saddle-point problems, which
complicates the construction of efficient iterative methods for solving the linear
systems arising from the discretization process. Implicit solution methods also
make a demand for solving large systems of nonlinear algebraic equations.

Many incompressible viscous flow computations involve large-scale flow
applications with several million grid points and thereby a need for the next

generation of super-computers before becoming engineering or scientific practice.
We have also mentioned that Navier-Stokes solvers are often embedded in much
more complex flow models, which couple turbulence, heat transfer, and multi-
specie fluids. Before attacking such complicated problems it is paramount that the
numerical state-of-the-art of Navier-Stokes solvers is satisfactory. Turek [Tur1996]
summarizes the results of benchmarks that were used to assess the quality of
solution methods and software for unsteady flow around a cylinder in 2D and 3D.
The discrepancy in results for the lifting force shows that more research is needed
to develop suficiently robust and reliable methods.

Numerical methods for incompressible viscous flow is a major part of the
rapidly growing field computational fluid dynamics (CFD). CFD is now emerging
as an operative tool in many parts of industry and science. However, CFD is not a
mature field either from a natural scientist's or an application engineer's point of
view; robust methods are still very much under development, many different
numerical tracks are still competing, and reliable computations of complex multi-
fluid flows are still (almost) beyond reach with today's methods and computers. We
believe that at least a couple of decades of intensive research are needed to merge
the seemingly different solution strategies and make them as robust as numerical
models in, e.g., elasticity and heat conduction. Sound application of CFD today
therefore requires advanced knowledge and skills both in numerical methods and
fluid dynamics. To gain reliability in simulation results, it should be a part of
common practice to compare the results from different discretizations, not only
varying the grid spacings but also changing the discretization type and solution
strategy. This requires a good overview and knowledge of different numerical
techniques. Unfortunately, many CFD practitioners have a background from only
one "numerical school" practicing a particular type of discretization technique and
solution approach. One goal of the present paper is to provide a generic overview
of the competing and most dominating methods in the part of CFD dealing with
laminar incompressible viscous flow.

There are a number of FE techniques which can be used to model steady and
transient flow.

Approximate solution strategies for time-dependent problems

X.1. Introduction

Writing a complete review of numerical methods for the Navier-Stokes equations
is probably an impossible task. The literature on numerical solutions of the Navier-
Stokes equations is overwhelming, and only a small fraction of the strategies is
cited in this work. These strategies include modern stabilization techniques
(pressure stabilization), penalty methods, artificial compressibility, and operator
splitting techniques (explicit schemes, implicit velocity step). The latter family of
strategies is popular and widespread and are known under many names in the
literature, e.g., projection methods and pressure (or velocity) correction methods
[Hua1999]. We end the overview of operating splitting methods with a framework
where such methods can be viewed as special preconditioners in an iterative
scheme for a fully implicit formulation of the Navier-Stokes equations.

Our focus is to present the basic ideas of the most fundamental solution
techniques for the Navier-Stokes equations in a form that is accessible to a wide
audience. We consider approximate solution strategies where the Navier-Stokes
equations are transformed to more common and tractable systems of partial
differential equations. We will present the augmented Lagrangian method, basic
operator-splitting algorithm for Newtonian and non-Newtonian fluids.

The most of the numerical strategies are based on discretizing governing
equations first in time, to get a set of simpler partial differential equations, and then
discretizing the time-discrete equations in space. One fundamental difficulty with
the this approach is that we derive a second-order Poisson equation for the pressure
itself or a pressure increment. Such a Poisson equation implies a demand for more
boundary conditions for p than what is required in the original system.

X.2. A naive derivation of schemes for transient heat diffusion. The backward
Euler method and the Crank−Nicolson.

In this subsection, we consider the transient heat diffusion equation

T
t

T 2∇=
∂
∂

 (x.y)

The first method uses literal timestepping and the second is based on timestepping
using differences.

The backward Euler method uses the algorithm

1
21

+
+ ∇=−

n
nn T

t

TT

δ
 (x.y)

which is equivalent to

nnn TTtT =∇− ++ 1
2

1 δ . (x.y)

In the heart of the algorithm, the equation (x.y) is assembled and solved at each
timestep.

Let us now consider another algorithm for solving the heat equation.
Firstly we introduce the Crank−Nicolson approximation

()nn
nn TT

t

TT +∇=−
+

+
1

21

2

1

δ
 (x.y)

Next define nn TTT −= +1δ and verify that Tδ satisfies

nTtT
t

T 22

2
∇=∇− δδδδ . (x.y)

You probably realise that the algorithms in this subsection are

computationally inefficient in that they assemble and solve a sparse matrix system
at each timestep. It would be much more efficient to assemble a large sparse matrix
system once and only once, factorise it, store the factors, and use them in
subsequent timesteps.

X.3. Basic iterative scheme for two-phase flow of non-Newtonian fluids

In this chapter a method for analyzing transient two-phase non-Newtonian flow is
presented. We begin with the Navier-Stokes equation for non-Newtonian fluids
represented by conservation of momentum

fSvv
v =⋅∇−∇+







 ∇⋅+ p
t∂

∂ρ . (x.y)

and conservation of mass

0=⋅∇ v . (x.y)

Let us consider two-phase flow of non-Newtonian fluids. The fluids are identified
by the different value of the colour function C, which is convected by the flow field

0C)(
C =∇⋅+ v
t∂

∂
. (x.y)

Fluid properties such as the density and the viscosity are assumed to be distributed
in the same manner as C, i.e.

)(1
12

12
1 CC

CC
−

−
−

+=
ρρρρ (x.y)

and

)(1
12

12
1 CC

CC
−

−
−

+=
ηηηη . (x.y)

Constitutive equation (extra-stress tensor) for non-Newtonian fluids we can write
in the following form GS)(γη= , where G is the rate of strain tensor (rate of

deformation tensor), T)(vvG ∇+∇= , and ()γη & is the viscosity, and γ& is a scalar

measure of rate of strain tensor defined by)(
2

1
GGtr=γ& .

To solve transient two-phase flow of non-Newtonian fluids the above
equations are linearized. Let r denote the number of linearization iterations and the
superscript n denotes the previous time step and n+1 denotes the current time step.
The linearization is carried out as follows:

() 01 =⋅∇ +
r
nv (x.y)

() () () ()













∇⋅+

−
+

−
+

+−
+

r
n

r
n

n
r
nr

n t 1
1
1

11
1 vv

vv
δ

ρ

() () ()r
n

r
n

r
np 1

21
11 +

−
++ ∇−∇+ vη

() () ()() () 1
1

1
1

1
1

1
1

−
+

−
+

−
+

−
+ =





 ∇+∇∇− r

n

Tr
n

r
n

r
n fvvη

(x.y)

() ()()() 011
1 =∇⋅+

−
++

+ r
n

r
n

n
r
n C

t

CC
v

δ
(x.y)

Rearranging terms we obtain:

() 01 =⋅∇ +
r
nv (x.y)

() () () () () () () =∇−∇+












∇⋅+ +

−
+++

−
+

+−
+

r
n

r
n

r
n

r
n

r
n

r
nr

n p
t 1

21
111

1
1

11
1 vvv

v η
δ

ρ

() () () () ()() 




 ∇+∇∇++= −

+
−
+

−
+

−
+

−
+

Tr
n

r
n

r
n

nr
n

r
n t

1
1

1
1

1
1

1
1

1
1 vv

v
f η

δ
ρ

(x.y)

() ()()()
t

C
C

t

C nr
n

r
n

r
n

δδ
=∇⋅+ ++

+
11

1 v

(x.y)

In the above:

() nn vv =+
0

1 , () nn pp =+
0

1 , () nn CC =+
0

1 , () nn ηη =+
0

1 , () nn ρρ =+
0

1 . (x.y)

In three dimensional case we can write equation (x.y) for i-th component of

velocity vector in the following form

() () ()
0

2

12

2

12

1

11 =
∂

∂
+

∂
∂

+
∂

∂ +++

x

v

x

v

x

v r
n

r
n

r
n

(x.y)

() () () () () () () =∇−
∂

∂
+













∇⋅+ +

−
+

+
+

−
+

+−
+

r
ni

r
n

i

r
nr

ni
r
n

r
nir

n v
x

p
v

t

v
1

21
1

1
1

1
1

11
1 η

δ
ρ v

() () () () () 1

1

1
1

1
1

1
1

−
+

−
+

−
+

−
+ ∇++= r

nij
r
n

nir
n

r
ni G

t

v
f η

δ
ρ

(x.y)

 The set of nonlinear simultaneous equations is solved by a siutable iterative
process in which a simple convergence sequence and method of variable updating
is employed. The procedure can be summarised in few steps.

First we solve set of equations for unknown value ()r
niv 1+ (similarly for all

components of velocity vector). Next we evaluate

() ()
()r

ni

r
ni

r
ni

v

vv

1

1
11

+

−
++ −

 (x.y)

at all node points. If these are within a specified tolerance, TOL, at all points then
assume that the calculation is complete for time equal 1+nt . If the differences do not

come within tolerance then update ()r
niv 1+

() ()() ()r
ni

r
ni

r
ni vvv 1

1
11 1 +

−
++ +−= ωω (x.y)

where ω is the weighting factor. For the simple arithmetic mean 5.0=ω .
The process is repeated (r is increased) until TOL is satisfied at all points within
domain and on all boundary points subject to gradient boundary conditions.
We can apply mentioned algorithm for all 1+nt .

X.4. Pressure correction scheme for non-isothermal flow

The pressure correction scheme decouples the velocity and pressure terms of the
momentum equations and implies the consideration of a Poisson equation for the
pressure at each time step [Hua1999].
 Beginning with the dimensionless incompressible Navier-Stokes equations

fSvv
v =⋅∇−∇+







 ∇⋅+ Prp
t∂

∂
. (x.y)

and conservation of mass

0=⋅∇ v . (x.y)

where () () ()vGvvSS η== is the extra stress tensor.

With the midpoint rule or Crank Nicolson scheme we can write

() nnnnnnn pPr
t

fvvSvv +∇−∇⋅−⋅∇=− ++ 11

1

δ
 (x.y)

01 =⋅∇ +nv . (x.y)

According to the projection concept we can always find an intermediate velocity

field *v which may satisfy the both following equations

() nnnnn
* Pr

t
fvvSvv +∇⋅−⋅∇=−

δ
1

 (x.y)

and

() 11

1
++ −∇=− n

*
n p

t
vv

δ
. (x.y)

Applying ∇ operator to the both sides of above equations and considering the
equation of conservation of mass we obtain

1
21

+−∇=⋅∇ n
* p

t
v

δ
. (x.y)

It is now apart that a three step scheme can be summarized from the above
operations, that is

Step 1:

() nnnnn
* Pr

t
fvvSvv +∇⋅−⋅∇=−

δ
1

 (x.y)

Step 2:

*
n t

p v⋅∇−=∇ + δ
1

1
2 (x.y)

Step 3:

() 11

1
++ −∇=− n

*
n p

t
vv

δ
. (x.y)

Such a scheme is specifically designed do deal with the incompressibility
constraint and introduces a Poisson equation for the pressure at each time step.
 Using a semi-implicit pressure correction scheme we can obtain the
following steps

Step 1a:

() nnnnnnnn p
PrPr

t
fvvSSvv +∇−∇⋅−⋅∇+⋅∇=− ++ 22

2
2121δ

 (x.y)

Step 1b:

() nnnnn
*

n
* p

PrPr

t
fvvSSvv +∇−∇⋅−⋅∇+⋅∇=− + 212122

1

δ
 (x.y)

Step 2:

*
n t

q v⋅∇−=∇ + δ
θ 1

1
2 (x.y)

Step 3:

() 11

1
++ −∇=− n

*
n q

t
vv

δ
 (x.y)

where nnn ppq −= ++ 11 and 21=θ , 21+nv is a half step velocity field.

 For incompressible flow under non-isothermal conditions, the energy
conservation equation must also be included in the formulation

Φ+∇=∇⋅+
∂
∂ η PrEcTT

t

T 2v .
(5.8)

In the non-isothermal case a semi-implicit pressure correction procedure can be
modified by adding following formulas in Step 1a and 1b

Step 1a:

() nnnnnn PrEcTTTT
t

Φ+∇⋅−∇=−+ η
δ

v2
21

2
 (x.y)

Step 1b:

() 21212121
2

1
1

+++++ Φ+∇⋅−∇=− nnnnnn PrEcTTTT
t

η
δ

v . (x.y)

X.5. 6. The augmented Lagrangian method

The flow equations have the difficulty that the pressure p, required in the
momentum equations, does not occur explicitly in the continuity equation. Rather,
the continuity equation acts like a constraint to the momentum equations, and this

constraint determines the pressure. The augmented Lagrangian method is a
refinement of the penalty method [Hua1999]. In the penalty method, a fictitious
representation for the pressure in the continuity equation is introduced

()v⋅∇−= Penp . (6.1)

If Pen is large, then v⋅∇ is forced to be small, therefore approximately satisfying
the continuity equation.

We introduce a timestepping algorithm to solve the above equations.

Step 1. In each timestep, we first solve thermal diffusion equation by assuming a
given velocity field and using an implicit method to handle the time derivative. We
have

1
2

11
1

−−−
− Φ+∇=⋅−∇⋅+−

n1-nnnnn
nn PrEc

t
ηθθ

δ
θθ

kvv (6.2)

which can be expressed as a PDE for nθ , where ()nn tθθ = , ()nn tvv = and n
denotes n-th time step.

Step 2. The momentum equation is then solved using an implicit method to handle

the time derivative
t∂

∂v
 and the augmented Lagrangian method to handle the

incompressibility constraint. The second step of actual algorithm that is
implemented is obtained by setting

() () () ()()i
n

i
n

i
n

i
n Penpppp v⋅∇−=∆+= −− 11 (6.3)

in the momentum equation.
This results in the iterative algorithm:

- obtain the ()i
nv by solving the equation:

()

() () ()()()
() () 0kS

vvv
vv

=+⋅∇+∇−

+⋅∇∇=∇⋅+−

−−

−−

n
i

n
i

n

i
n

i
n

i
n

n
i

n

PrRaPrp

Pen
t

θ
δ

11

11

 (6.4)

with ()

1
0

−= nn vv and ()
1

0
−= nn pp ;

- calculate the p∆ using the equation:

()() 0=⋅∇+∆ i
nPenp v ; (6.5)

- the pressure is updated using:

() () ppp i
n

i
n ∆+= −1 . (6.6)

During each timestep, several iterations (for example maxi) of the solution of the
discretised momentum equation are required in order to obtain a converged
velocity field. The number of iteration is pointed by superscript of velocity vector
and pressure term.

Step 3. Update:

ttt nn δ+= −1 , () max)(
1

0 i
nnn −== vvv and () max)(

11
0 i

nnn ppp −− == . (6.7)

The algorithm, if it converges, does not introduce any further error and provides an
answer for the pressure. It can be implemented using finite element method
[Hue1975, Tay1981].

X.6. Basic operator-splitting algorithm for Newtonian fluid

The most popular numerical solution strategy today for the Navier-Stokes
equations are based on operator-splitting [Li1991; Li1993; Luo1996]. This means
that the system is split into a series of simpler, familiar equations, such as
advection equations, diffusion equations, advection-diffusion equations, Poisson
equations, and explicit or implicit updates. Efficient numerical methods are much
easier to construct for these standard equations that for the original system directly.
In particular, the evolution of the velocity consists of two main steps. First we
neglect the incompressibility condition and compute a predicted velocity.
Thereafter, the velocity is corrected by performing a projection onto the divergence
free vector field.

The Navier−Stokes momentum equation is:

vkvv
v ∇⋅∇++−∇=∇⋅+

∂
∂

Pr PrRap
t

θ . (7.1)

For the unsteady Navier−Stokes equation, we solve (7.1) as an initial value

problem, that is, at time step n, we know the velocity value nv , and we obtain the

velocity at time step n+1 by solving for the velocity increment vδ so that
vvv δ+=+ nn 1 . From the Navier−Stokes equation, we see that vδ satisfyies:

vkvv
v

vvv
v

∇⋅∇++∇−




 ∇⋅+
∂
∂−

=∇⋅∇−∇⋅+
∂

∂

Pr PrRap
t

t

θ

δδδ

 (7.2)

where due to the nonlinear convection term, the v on the RHS is the latest updated
velocity value from nv , that is vvv δ+= n . The pressure p will be solved through
the continuity equation in a way that is explained later.
The left-hand side of (7.2) can be split into two principal operators as follows:

() ()

vkvv
v

vv
v

∇⋅∇++∇−




 ∇⋅+
∂
∂−

=−+
∂

∂

Pr PrRap
t

LL
t dc

θ

δδδ

 (7.3)

where ()vδcL and ()vδdL are the convective and diffusive operators, respectively.
This equation for velocity increment can be split as follows:

() vkvv
v

v
v ∇⋅∇++∇−




 ∇⋅+
∂
∂−=+

∂
∂

Pr PrRap
t

L
t

*
c

*

θδδ
 (7.4)

** vvv δ+= (7.5)

() **
*

d Pr PrRap
t

L
t

vkvv
v

v
v ∇⋅∇++∇−








∇⋅+

∂
∂−=−

∂
∂ θδδ

 (7.6)

We can set up numerical schemes to integrate equations (7.4) and (7.6)
respectively. We define the numerical scheme for equation (7.4) as cN and the

scheme for equation (7.6) as dN . Equation (7.3) is advanced from time step n to
n+1 by the two-stage convection-diffusion split:

vvv δcdnn NN+=+1 (7.7)

Alternatively we can set up a symmetric sequence of the numerical schemes to
have

vvv δcddcnn NNNN+=+2 (7.8)

In our Navier−Stokes equation, the convective operator cL is nonlinear.

Therefore, a local iteration loop is needed for equation (7.8). The numerical
scheme cN will be a fully implicit backward Crank−Nicolson method. The three

components of velocity vector v can be solved separately by cN . In this way, less
computer memory is required for inverting the linear matrices.

For the i-th component of vector v , iv , cN can be shown to be

)k(
n,ii

i

)k(
n,i

k

j

)j(
i

)k(
i

)k(
i

vPrk PrRa
x

p

v
t

v

v
t

v

1

1

1

0

+

+

−

=

∇⋅∇++
∂
∂−



















∇⋅+−=∇⋅+
∑

θ

δ

δ
δ

δ
δ

vv

 (7.9)

where k denotes the k-th iterative step for the nonlinear convective operator, n
denotes n-th time step , and

)()(
1,

)1(
1,

k
i

k
ni

k
ni vvv δ+= +
+
+ (7.10)

Similarly, the numerical scheme dN can be set up for the i-th component in
approach:

)k(
n,ii

i

)k(
n,i

k

j

)j(
i

)k(
i

)k(
i

vPrk PrRa
x

p

v
t

v

v
t

v

1

1

1

0

+

+

−

=

∇⋅∇++
∂
∂−



















∇⋅+−=∇⋅∇−
∑

θ

δ

δ
δ

δ
δ

v

 (7.11)

where 1, +niv is always updated at each step through (7.10).

X.7. Basic operator-splitting algorithm for non-Newtonian fluid

The Navier−Stokes momentum equation for non-Newtonian fluid is:

Skvv
v ⋅∇++−∇=∇⋅+

∂
∂

Pr PrRap
t

θ . (8.1)

If we consider extra stress tensor S as a function of the deformation rate tensor

G and viscosity µ as a function of velocity v we can write

() () ()vGvvS η= (8.2)

For the unsteady Navier−Stokes equation, we solve (8.1) as an initial value

problem, that is, at time step n, we know the velocity value nv , and we obtain the
velocity at time step n+1 by solving for the velocity increment vδ so that

vvv δ+=+ nn 1 . From the Navier−Stokes equation, we see that vδ satisfies:

() ()()

() ()()vGvk

vv
v

vGvvv
v

 Pr PrRap

t
 Pr

t

ηθ

δηδδ

⋅∇++∇−








 ∇⋅+
∂
∂−=⋅∇−∇⋅+

∂
∂

 (8.3)

where due to the nonlinear convection term, the v on the RHS is the latest updated
velocity value from nv , that is vvv δ+= n . The pressure p will be solved through
the continuity equation in a way that is explained later.
The left-hand side of (8.3) can be split into two principal operators as follows:

() ()

() ()()vGvk

vv
v

vv
v

 Pr PrRap

t
LL

t dsc

ηθ

δδδ

⋅∇++∇−








 ∇⋅+
∂
∂−=−+

∂
∂

 (8.4)

where ()vδcL and ()vδdsL are the convective and diffusive operators, respectively.
This equation for velocity increment can be split as follows:

() () ()()vGvkvv
v

v
v

 Pr PrRap
t

L
t

*
c

*

ηθδδ ⋅∇++∇−




 ∇⋅+
∂
∂−=+

∂
∂

 (8.5)

** vvv δ+= (8.6)

() () ()()**
*

ds Pr PrRap
t

L
t

vGvkvv
v

v
v ηθδδ ⋅∇++∇−








∇⋅+

∂
∂−=−

∂
∂

 (8.7)

We can set up numerical schemes to integrate equations (8.5) and (8.7)
respectively. We define the numerical scheme for equation (8.5) as cN and the

scheme for equation (8.7) as dsN . Equation (8.4) is advanced from time step n to
n+1 by the two-stage convection-diffusion split:

vvv δcdsnn NN+=+1 (8.8)

Alternatively we can set up a symmetric sequence of the numerical schemes to
have

vvv δcdsdscnn NNNN+=+2 (8.9)

In our Navier−Stokes equation operators cL and dsL are nonlinear. Therefore,

a local iteration loop is needed for equation (8.8-8.9). The numerical scheme cN

will be a fully implicit backward Crank−Nicolson method.

Numerical scheme cN can be shown to be

() ()

()() ()())k(
n

k
n

)k(
n

k
n

k

j

)j(

)k(k
n

)k(

 Pr PrRap

tt

11

11

1

0
1

++

++

−

=
+

⋅∇++∇−



















∇⋅+−=∇⋅+
∑

vGvk

vv

v

vv
v

ηθ

δ

δ
δ

δ
δ

 (8.10)

where k denotes the k-th iterative step for the nonlinear convective operator, and

)()(
1

)1(
1

kk
n

k
n vvv δ+= +

+
+ (8.11)

Similarly, the numerical scheme dsN can be set up in approach:

() ()()

() ()())k(
n

)k(
n

)k(
n

)k(
n

k

j

)j(

)k()k(
n

)k(

 Pr PrRap

t
 Pr

t

11

11

1

0
1

++

++

−

=
+

⋅∇++∇−



















∇⋅+−=⋅∇−
∑

vGvk

vv

v

vGv
v

ηθ

δ

δ
δη

δ
δ

 (8.12)

where 1+nv is always updated at each step through (8.11).

Alternatively the three components of velocity vector v can be solved
separately by cN . In this way, less computer memory is required for inverting the

linear matrices. For the i-th component of vector v numerical schemes cN can be
shown to be

() ()()() i
)k(

n
)k(

ni
i

)k(
n,i

)k(
n

k

j

)j(
i

)k(
i

)k(
n

)k(
i

 Prk PrRa
x

p

v
t

v

v
t

v

evGv

vv

⋅⋅∇++
∂
∂−



















∇⋅+−=∇⋅+

++

++

−

=
+

∑

11

11

1

0
1

ηθ

δ

δ
δ

δ
δ

 (8.13)

where

)()(
1,

)1(
1,

k
i

k
ni

k
ni vvv δ+= +
+
+ (8.14)

Similarly, the numerical scheme dsN can be set up for the i-th component in
approach:

() ()()

() ()()() i
)k(

n
)k(

ni
i

)k(
n,i

)k(
n

k

j

)j(
i

)k(
i

*)k(
n

)k(
i

 Prk PrRa
x

p

v
t

v

v Pr
t

v

evGv

vvGv

⋅⋅∇++
∂
∂−



















∇⋅+−=∇⋅∇−

++

++

−

=
+

∑

11

11

1

0
1

ηθ

δ

δ
δη

δ
δ

 (8.15)

where 1, +niv is always updated at each step through (8.14).

In this algorithm, we have assumed that pressure p is known, and mass

conservation is satisfied. The pressure p needs to be obtained through an equation
that is derived from the mass conservation law. For incompressible fluid flows,
this mass conservation law produces the continuity equation

0=⋅∇ v (8.16)

An artificial compressibility method is used here to derive the equation for
pressure. From the continuity equation, we can assume that the pressure p satisfies
a pseudo-transient state

v⋅∇−=
∂
∂

p β
τ

 (8.17)

where parameter τ is the pseudo-time. Through a second-order Taylor expansion
of the term τ∂∂ /p and substitution of the Navier−Stokes momentum equation, we
can arrive at a Poisson equation for pressure:

()
v⋅∇∆−=∇∆− pp βτδτβδ 2

2

2
 (8.18)

where τ∆ is the pseudo-time step.

