Time-stepping techniquesfor the incompressible Navier-Stokes equations
Strategies and methods for Computational Fluid Dynamics
Introduction

A great deal of computational research has beeertaien and published in the
field of Computational Fluid Dynamics (CFD) sindeetadvent of the digital
computer. Before 1970, the Finite Difference MethfDM) was almost
universally used as a computer based numerical adeih modeling fluid
dynamics process [xyz0000]. Since then there has berevolution in the general
area of mathematical modeling. Highly sophicticaaad detailed analysis of many
engineering problems has become possible. Howi#wean be argued that the last
three decades have in many ways belonged to tlie Element Method (FEM) as
the method of choice among the currently availalpieerical methods for solving
mathematical equations [Huel975, Hin1979]. Fluidhaipics being one of the
oldest branches of physics, has consequently beenob the main arenas of
activity for researchers and practitioners of FHMspite the continued use of
FDM and related techniques for routine fluid dynesniproblems, FEM is
increasingly the preferred numerical method forysia of the most complex types
of flow problems with unrivalled accuracy [Hua1999]

The vast majority of CFD related research has aunaged on
compressible or incompressible Newtonian fluidsvfl@ie2000c¢, Tay1981]. Such
fluids have a constant viscosity which is independef the velocity gradient,
temperature or the other quantities. This meanttieastress in Newtonian fluids is
proportional to the rate of shear. There exist h@rea fairly large category of
fluids for which the viscosity is not independeffitlee rate shear and these fluids
are referred to as non-Newtonian. Exact soluti@isnion-Newtonian flows are
practically impossible. The necessitates the useinferical methods for obtaining
approximate solutions to most non-Newtonian floatpems.

Efficient and reliable numerical solution of thecampressible Navier-
Stokes equations for industrial flow is extremehalenging. Very rapid changes
in the velocity field may take place in thin bound#ayers close to solid walls.
Complex geometries can also lead to rapid locahgds in the velocity. Locally
refined grids, preferably in combination with ermstimation and automatic grid
adaption, are hence a key ingredient in robust oasthMost implicit solution
methods for the Navier-Stokes equations end up seittile-point problems, which
complicates the construction of efficient iteratimethods for solving the linear
systems arising from the discretization processplibit solution methods also
make a demand for solving large systems of nonliakegebraic equations.

Many incompressible viscous flow computations ineolarge-scale flow
applications with several million grid points anlkdeteby a need for the next



generation of super-computers before becoming eerging or scientific practice.
We have also mentioned that Navier-Stokes solveroien embedded in much
more complex flow models, which couple turbulenbeat transfer, and multi-
specie fluids. Before attacking such complicatembfgms it is paramount that the
numerical state-of-the-art of Navier-Stokes solversatisfactory. Turek [Turl996]
summarizes the results of benchmarks that were tsesbsess the quality of
solution methods and software for unsteady flowuadoa cylinder in 2D and 3D.
The discrepancy in results for the lifting forceosls that more research is needed
to develop suficiently robust and reliable methods.

Numerical methods for incompressible viscous flgwaimajor part of the
rapidly growing field computational fluid dynami¢€FD). CFD is how emerging
as an operative tool in many parts of industry seience. However, CFD is not a
mature field either from a natural scientist's oragpplication engineer's point of
view; robust methods are still very much under tment, many different
numerical tracks are still competing, and reliatenputations of complex multi-
fluid flows are still (almost) beyond reach witlday's methods and computers. We
believe that at least a couple of decades of intengsearch are needed to merge
the seemingly different solution strategies and enddem as robust as numerical
models in, e.g., elasticity and heat conductiorurSoapplication of CFD today
therefore requires advanced knowledge and skilte bonumerical methods and
fluid dynamics. To gain reliability in simulatioresults, it should be a part of
common practice to compare the results from differdiscretizations, not only
varying the grid spacings but also changing therdigation type and solution
strategy. This requires a good overview and knogdedf different numerical
techniques. Unfortunately, many CFD practitioneageha background from only
one "numerical school" practicing a particular tygeliscretization technique and
solution approach. One goal of the present papgr fgovide a generic overview
of the competing and most dominating methods inptie of CFD dealing with
laminar incompressible viscous flow.

There are a number of FE techniques which can bd ts model steady and
transient flow.

Approximate solution strategiesfor time-dependent problems



X.1. Introduction

Writing a complete review of numerical methods tlee Navier-Stokes equations
is probably an impossible task. The literature omerical solutions of the Navier-
Stokes equations is overwhelming, and only a sinadition of the strategies is
cited in this work. These strategies include modstabilization techniques
(pressure stabilization), penalty methods, ardficiompressibility, and operator
splitting techniques (explicit schemes, implicilo@ty step). The latter family of
strategies is popular and widespread and are knawvder many names in the
literature, e.g., projection methods and pressarevélocity) correction methods
[Hual999]. We end the overview of operating spigtmethods with a framework
where such methods can be viewed as special préiomeds in an iterative
scheme for a fully implicit formulation of the NaviStokes equations.

Our focus is to present the basic ideas of the mwostamental solution
techniques for the Navier-Stokes equations in enftirat is accessible to a wide
audience. We consider approximate solution stratewihere the Navier-Stokes
equations are transformed to more common and blectaystems of partial
differential equations. We will present the augreentLagrangian method, basic
operator-splitting algorithm for Newtonian and ndawtonian fluids.

The most of the numerical strategies are basedismmetizing governing
equations first in time, to get a set of simplettiphdifferential equations, and then
discretizing the time-discrete equations in sp&xee fundamental difficulty with
the this approach is that we derive a second-d?desson equation for the pressure
itself or a pressure increment. Such a Poissontieguianplies a demand for more
boundary conditions for p than what is requirethim original system.

X.2. A naive derivation of schemes for transienathdiffusion. The backward
Euler method and the CrariKicolson.

In this subsection, we consider the transient tigfatsion equation

T _
o o°T (x.y)

The first method uses literal timestepping andstheond is based on timestepping
using differences.
The backward Euler method uses the algorithm

Tn+1 -T

= DZTn+1 (Xy)



which is equivalent to
T, —-d&0°T , =T,. (x.y)
In the heart of the algorithm, the equation (xg)assembled and solved at each
timestep.
Let us now consider another algorithm for solvitg theat equation.

Firstly we introduce the Crarkicolson approximation
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Next definedr =T,,, - T, and verify thatdT satisfies

or —%Dza'r = &0°T,. (x.y)

You probably realise that the algorithms in thisbsection are
computationally inefficient in that they assembiel &olve a sparse matrix system
at each timestep. It would be much more efficieragsemble a large sparse matrix
system once and only once, factorise it, store fawors, and use them in
subsequent timesteps.

X.3. Basic iterative schemefor two-phase flow of non-Newtonian fluids
In this chapter a method for analyzing transierg-pase non-Newtonian flow is

presented. We begin with the Navier-Stokes equdtimmon-Newtonian fluids
represented by conservation of momentum

p(%+vﬂ]]vj+ﬂp—ﬂ[$=f. (x.y)

and conservation of mass
Olv=0. (x.y)

Let us consider two-phase flow of non-Newtoniardiu The fluids are identified
by the different value of the colour functi@y which is convected by the flow field



%+(VDD)C=O. (x.y)

Fluid properties such as the density and the vigcase assumed to be distributed
in the same manner &si.e.

_ P~ P
=p +=—"=(C-C
P=p C,-C, ( 1) (x.y)
and
_ M, =
=n,+—=—"=(C-C,)).
n=mn C,-C, ( 1) (x.y)

Constitutive equation (extra-stress tensor) for-Nemwtonian fluids we can write
in the following form S=7(y)G, where G is the rate of strain tensor (rate of

deformation tensor) = Ov +(0Ov) ", and/7(y) is the viscosity, ang is a scalar

measure of rate of strain tensor definedjby %tr (GG).

To solve transient two-phase flow of non-Newtoniduids the above
equations are linearized. Lietlenote the number of linearization iterations toed
superscriph denotes the previous time step aridl denotes the current time step.
The linearization is carried out as follows:

Orv),, =0 (X.y)
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Rearranging terms we obtain:
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In the above:
(V) =V, (Pl = Par (Cha =C ()5 =770 (O)5 = 0. (xy)

In three dimensional case we can write equatioy) (r i-th component of
velocity vector in the following form

a(Vl):Hl + a(VZ):Hl + a(Vz ):1+1 -0
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The set of nonlinear simultaneous equations igesby a siutable iterative
process in which a simple convergence sequencenatitbd of variable updating
is employed. The procedure can be summarised irsteps.

First we solve set of equations for unknown Vall.(Gi ):1+1 (similarly for all
components of velocity vector). Next we evaluate

% (x.y)

n+l



at all node points. If these are within a specitielérance,TOL, at all points then
assume that the calculation is complete for timeaeg,,, . If the differences do not

r
n+l

come within tolerance then updde)

(Vi ):1+1 = (1_ w)(Vi ):11 + (U(Vi ):1+1 (x.y)
where « is the weighting factor. For the simple arithmetiean« = 05.
The process is repeatedig increased) untiTOL is satisfied at all points within

domain and on all boundary points subject to gradieundary conditions.
We can apply mentioned algorithm for §l;.

X.4. Pressur e cor rection schemefor non-isothermal flow

The pressure correction scheme decouples the telmad pressure terms of the
momentum equations and implies the consideratioa Bbisson equation for the
pressure at each time step [Hual999].

Beginning with the dimensionless incompressibleiblaStokes equations

(%+VDDVJ+Dp—PrDES=f. (x.y)

and conservation of mass
Olv=0. (x.y)

whereS=S(v)=n(v)G(v) is the extra stress tensor.
With the midpoint rule or Crank Nicolson schemeaca@ write

1
E(Vnﬂ - Vn) =PrQ [Sn —Vj DDVn - |:Jpn+1 +fn (Xy)

0W,, =0. (x.y)

According to the projection concept we can alwags fan intermediate velocity
field v which may satisfy the both following equations

%(v* —vn)z PrOS, - v, v, +f, (x.y)



and
%(le -V ) ==0ppsq - (x.y)

Applying O operator to the both sides of above equations aomdidering the
equation of conservation of mass we obtain

1 *
ED v = _szn+1' (x.y)

It is now apart that a three step scheme can bemsmaed from the above
operations, that is

Step 1:
%(v* —vn)z PrOCs, - v, v, +f, (x.y)

Step 2:

2 1 *

O Pn1 = _ED v (Xy)

Step 3:

1 *

E(V’”l -V )= | N (x.y)

Such a scheme is specifically designed do deal wu#hiln incompressibility
constraint and introduces a Poisson equation foptessure at each time step.

Using a semi-implicit pressure correction scheme e@an obtain the
following steps

Step la:

2 Pr Pr
E(Vnﬁl/z - Vn):7D [Snﬂ,/z +7D |:Sn ~Vp |]DVn - Dpn +fn (x.y)

Step 1b:



1/ - Pr « Pr
—( —vn):—D[S +—00B, =V Eﬂ]vnw—Dann (x.y)
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Step 2:
1 *
6 |:J2qn+1 = _ED v (x.y)
Step 3:
1 *
E(Vnﬂ -V ): _an+1 (Xy)

whereq,,; = P,y — P, and8=1/2, v ., is a half step velocity field.

For incompressible flow under non-isothermal ctiods, the energy
conservation equation must also be included irfdhaulation

‘Z—Iwum =0°T + PrEcnd .

(5.8)

In the non-isothermal case a semi-implicit pressioeection procedure can be
modified by adding following formulas in Step 1adatb

Step la:
2 )=0
3 They2 =T )= 0T, — v, [T, + PrEc®, (x.y)
Step 1b:
1
E(Tnﬂ =T,)= 0Tz = Visyo [T,y + PIECHD 5. (X.y)

X.5. 6. Theaugmented L agrangian method

The flow equations have the difficulty that the gmare p, required in the
momentum equations, does not occur explicitly im ¢bntinuity equation. Rather,
the continuity equation acts like a constrainthe momentum equations, and this



constraint determines the pressure. The augmentatahgian method is a
refinement of the penalty method [Hual999]. In pgemalty method, a fictitious
representation for the pressure in the continujtyation is introduced

p=-Pen(0 V). (6.1)

If Pen is large, therl[v is forced to be small, therefore approximatelységing
the continuity equation.

We introduce a timestepping algorithm to solveaheve equations.

Step 1.In each timestep, we first solve thermal diffusemguation by assuming a
given velocity field and using an implicit methamtandle the time derivative. We
have

% +v,, 086, -v,, k=0%, + PrEcn,,®,, (6.2)
which can be expressed as a PDE &t where 8, =6(t,), v, =v(t,) andn

denotes-th time step.

Step 2.The momentum equation is then solved using ani@gmhphethod to handle
the time derivative% and the augmented Lagrangian method to handle the

incompressibility constraint. The second step otualc algorithm that is
implemented is obtained by setting

p!) = pi + Ap = pi™ — Pen(D 1) (6.3)

in the momentum equation.
This results in the iterative algorithm:

- obtain thev!” by solving the equation:

W Vo, Vi mvl) = pen(0(0 v )+
- (6.4)

-0+ prOsi + RaPrgk =0

n n

with v =v__andp® =p__;
- calculate theAp using the equation:



Ap+Pen(Dv?)=0; (6.5)

- the pressure is updated using:

p!) = pi™ +Ap. (6.6)

During each timestep, several iterations (for exammax) of the solution of the
discretised momentum equation are required in otdeobtain a converged
velocity field. The number of iteration is pointegl superscript of velocity vector
and pressure term.

Step 3.Update:

t, =t +d, v, =V =viT™ and pi¥ = p,, = pi§>. (6.7)
The algorithm, if it converges, does not introdaog further error and provides an
answer for the pressure. It can be implementedgufimite element method

[Huel975, Tay1981].
X.6. Basic operator-splitting algorithm for Newtonian fluid

The most popular numerical solution strategy today the Navier-Stokes
equations are based on operator-splitting [Li1991993; Luo1996]. This means
that the system is split into a series of simplamiliar equations, such as
advection equations, diffusion equations, adveetidfiusion equations, Poisson
equations, and explicit or implicit updates. Efficf numerical methods are much
easier to construct for these standard equatiaiddahthe original system directly.
In particular, the evolution of the velocity corisi®f two main steps. First we
neglect the incompressibility condition and compue predicted velocity.
Thereafter, the velocity is corrected by performéngrojection onto the divergence
free vector field.
The NavierStokes momentum equation is:

g_\t’+VDDV:—Dp+RaPer+PrDDDV. (7.1)

For the unsteady NavieBtokes equation, we solve (7.1) as an initial value
problem, that is, at time step we know the velocity value,,, and we obtain the



velocity at time stepn+l by solving for the velocity incremendv so that
V., =V, +ov. From the NavietfStokes equation, we see that satisfyies:

%+VDD5/—DEID§/=

v (7.2)
—|:E+V[|DV}—DP+ RaPr @k + Pr v

where due to the nonlinear convection term, ¢ten the RHS is the latest updated
velocity value fromv,, thatisv=v +ov. The pressurp will be solved through

the continuity equation in a way that is explaiteger.
The left-hand side of (7.2) can be split into twimpipal operators as follows:

O L (1)~ Ly (&)=
(7.3)

—B—\:+VDDV}—Dp+RaPer+PrDE£DV

where L, (dv) and L,(dv) are the convective and diffusive operators, resyeyt
This equation for velocity increment can be sgifalows:

a?t’ +|_c(d,*)=_[‘;_‘t’+vmv ~Op+RaPr 6k +Pr Ov (7.4)
%—Ld(d/):{aaltwmv* ~Op+RaPr @k +Pr 0y (7.6)

We can set up numerical schemes to integrate emsat(7.4) and (7.6)
respectively. We define the numerical scheme faraggn (7.4) asN.and the

scheme for equation (7.6) d&¢,. Equation (7.3) is advanced from time stefo
n+1 by the two-stage convection-diffusion split:

Vn+1 = Vn + Nd ch/ (77)

Alternatively we can set up a symmetric sequencéhefnumerical schemes to
have



Vn+2 = Vn + NcNd Nd ch/ (78)

In our NavierStokes equation, the convective operatgris nonlinear.
Therefore, a local iteration loop is needed for atigm (7.8). The numerical
schemeN, will be a fully implicit backward CraniNicolson method. The three
components of velocity vector can be solved separately by, . In this way, less
computer memory is required for inverting the linewatrices.

For thei-th component of vectov,v,, N. can be shown to be

k-1
500 Zd,i(J)
& +v Doy =~ —J_Od +v IOV K,

(7.9

—g—p+RaPr¢9ki + Pr 0 v
X

i,n+1

wherek denotes the-th iterative step for the nonlinear convective opetato
denotes n-th time step , and

k+1) — \,(k
Vi(,n+1) _Vi(,n)+

L+ (7.10)

Similarly, the numerical schem&l; can be set up for theth component in
approach:

(7.11)

—g—p+RaPeri +Pr OV §)
%

i,n+1

wherev, .., is always updated at each step through (7.10).

X.7. Basic operator-splitting algorithm for non-Newtonian fluid

The NavierStokes momentum equation for non-Newtonian fluid is



g_‘t’+vm\,=_mp+RaPrek+PrD[$. (8.1)

If we consider extra stress tens®ras a function of the deformation rate tensor
G and viscosityu as a function of velocity we can write

s{v)=n(v)G(v) (8.2)

For the unsteady NavieBtokes equation, we solve (8.1) as an initial value
problem, that is, at time step we know the velocity value,,, and we obtain the
velocity at time stepn+l by solving for the velocity incremendv so that
V., =V, +ov. From the NaviefStokes equation, we see that satisfies:

%WD]M/—PrD[ﬂq(v)G(d/))z—B—\t’wDDv}

—Op+RaPr 8k +PrOp(v)G(v))

(8.3)

where due to the nonlinear convection term, ¢ten the RHS is the latest updated
velocity value fromv,, thatisv=v +dv. The pressurp will be solved through

the continuity equation in a way that is explaitegér.
The left-hand side of (8.3) can be split into twimpipal operators as follows:

FEY _fov
2 (o) Lulo)= Xrvim|

~Op+RaPrk +Proy(v)G(v))

(8.4)

where L (dv) and Ly (ov) are the convective and diffusive operators, resyeyt
This equation for velocity increment can be sggifalows:

%+Lc(&*):—{g—\:+vﬂﬂv -Op+RaPrék +Prifp(v)G(v))  (8.5)

vV =v+ov (8.6)

% —L (%)= {aalt +vIIV |-Op+RaProk+Profp(v)G(v))  8.7)




We can set up numerical schemes to integrate emsat(8.5) and (8.7)
respectively. We define the numerical scheme faraégn (8.5) asN and the

scheme for equation (8.7) &$,,. Equation (8.4) is advanced from time stefo
n+1 by the two-stage convection-diffusion split:

Vi = Vi + Ndchd/ (88)

Alternatively we can set up a symmetric sequencéhefnumerical schemes to
have

Vn+2 :Vn + NcNdsNdchd/ (89)

In our NavierStokes equation operatots and L, are nonlinear. Therefore,
a local iteration loop is needed for equation @8 The numerical schemi,
will be a fully implicit backward CrankNicolson method.

Numerical schemBl, can be shown to be

k-1 )
J
(k) DN

—+V$1k+)1[ﬂ]d/(k)=_ = +V£1k+)1mv(nli)1
a a (8.10)

~Op+RaProk +Proy(vi))(via)

wherek denotes thé-th iterative step for the nonlinear convective operaad

vl =y 4 5 (0 (8.11)

n+l
Similarly, the numerical schemid , can be set up in approach:

k-1

3 o)
5’; -profp(vi)e(wto))=- B v

(8.12)

-Op+RaProk +PrQ Eﬁ/](vﬁ]'i)l)G(vg'i}))



wherev ,, is always updated at each step through (8.11).

Alternatively the three components of velocity wectv can be solved
separately byN, . In this way, less computer memory is requiredifioerting the
linear matrices. For thieth component of vectov numerical schemesl can be
shown to be

k-1
z o
(k) =
S v maf) = vl v,
(8.13)
_g_p +RaPr 0k +Pr(oop(v)e(v)))e
X
where
Vi(,';:ll) — Vi(,|:1)+1 + d/i(k) (8.14)

Similarly, the numerical schemé&l,, can be set up for theth component in
approach:

k-1

zd/i(j)

dg(tk) -prodpv)ely Joad = Eo— vl my,

(8.15)

_g_z +RaPr gk +Pr(ndp(vid)e (V) e

wherev, .., is always updated at each step through (8.14).

In this algorithm, we have assumed that presgui® known, and mass
conservation is satisfied. The presspneeeds to be obtained through an equation
that is derived from the mass conservation lawr iRcompressible fluid flows,
this mass conservation law produces the contiragjtyation



Olv=0 (8.16)
An artificial compressibility method is used here derive the equation for

pressure. From the continuity equation, we canrasdhat the pressupesatisfies
a pseudo-transient state

P__pow (8.17)

where parameter is the pseudo-time. Through a second-order Tag#pansion
of the termdp/dr and substitution of the NavieBtokes momentum equation, we
can arrive at a Poisson equation for pressure:

@—ﬁ@mzmz—mﬁmw (8.18)

where At is the pseudo-time step.



