
 
Time-stepping techniques for the incompressible Navier-Stokes equations 
 
Strategies and methods for Computational Fluid Dynamics 
 
Introduction 
 
A great deal of computational research has been undertaken and published in the 
field of Computational Fluid Dynamics (CFD) since the advent of the digital 
computer. Before 1970, the Finite Difference Method (FDM) was almost 
universally used as a computer based numerical method in modeling fluid 
dynamics process [xyz0000]. Since then there has been a revolution in the general 
area of mathematical modeling. Highly sophicticated and detailed analysis of many 
engineering problems has become possible. However, it can be argued that the last 
three decades have in many ways belonged to the Finite Element Method (FEM) as 
the method of choice among the currently available numerical methods for solving 
mathematical equations [Hue1975, Hin1979]. Fluid dynamics being one of the 
oldest branches of physics, has consequently been one of the main arenas of 
activity for researchers and practitioners of FEM. Despite the continued use of 
FDM and related techniques for routine fluid dynamics problems, FEM is 
increasingly the preferred numerical method for analysis of the most complex types 
of flow problems with unrivalled accuracy [Hua1999]. 

The vast majority of CFD related research has concentrated on 
compressible or incompressible Newtonian fluids flow [Zie2000c, Tay1981]. Such 
fluids have a constant viscosity which is independent of the velocity gradient, 
temperature or the other quantities. This mean that the stress in Newtonian fluids is 
proportional to the rate of shear. There exist however, a fairly large category of 
fluids for which the viscosity is not independent of the rate shear and these fluids 
are referred to as non-Newtonian. Exact solutions for non-Newtonian flows are 
practically impossible. The necessitates the use of numerical methods for obtaining 
approximate solutions to most non-Newtonian flow problems. 

Efficient and reliable numerical solution of the incompressible Navier-
Stokes equations for industrial flow is extremely challenging. Very rapid changes 
in the velocity field may take place in thin boundary layers close to solid walls. 
Complex geometries can also lead to rapid local changes in the velocity. Locally 
refined grids, preferably in combination with error estimation and automatic grid 
adaption, are hence a key ingredient in robust methods. Most implicit solution 
methods for the Navier-Stokes equations end up with saddle-point problems, which 
complicates the construction of efficient iterative methods for solving the linear 
systems arising from the discretization process. Implicit solution methods also 
make a demand for solving large systems of nonlinear algebraic equations.  

Many incompressible viscous flow computations involve large-scale flow 
applications with several million grid points and thereby a need for the next 



generation of super-computers before becoming engineering or scientific practice. 
We have also mentioned that Navier-Stokes solvers are often embedded in much 
more complex flow models, which couple turbulence, heat transfer, and multi-
specie fluids. Before attacking such complicated problems it is paramount that the 
numerical state-of-the-art of Navier-Stokes solvers is satisfactory. Turek [Tur1996] 
summarizes the results of benchmarks that were used to assess the quality of 
solution methods and software for unsteady flow around a cylinder in 2D and 3D. 
The discrepancy in results for the lifting force shows that more research is needed 
to develop suficiently robust and reliable methods. 

Numerical methods for incompressible viscous flow is a major part of the 
rapidly growing field computational fluid dynamics (CFD). CFD is now emerging 
as an operative tool in many parts of industry and science. However, CFD is not a 
mature field either from a natural scientist's or an application engineer's point of 
view; robust methods are still very much under development, many different 
numerical tracks are still competing, and reliable computations of complex multi-
fluid flows are still (almost) beyond reach with today's methods and computers. We 
believe that at least a couple of decades of intensive research are needed to merge 
the seemingly different solution strategies and make them as robust as numerical 
models in, e.g., elasticity and heat conduction. Sound application of CFD today 
therefore requires advanced knowledge and skills both in numerical methods and 
fluid dynamics. To gain reliability in simulation results, it should be a part of 
common practice to compare the results from different discretizations, not only 
varying the grid spacings but also changing the discretization type and solution 
strategy. This requires a good overview and knowledge of different numerical 
techniques. Unfortunately, many CFD practitioners have a background from only 
one "numerical school" practicing a particular type of discretization technique and 
solution approach. One goal of the present paper is to provide a generic overview 
of the competing and most dominating methods in the part of CFD dealing with 
laminar incompressible viscous flow. 
 
There are a number of FE techniques which can be used to model steady and 
transient flow. 
 
 
 
 
 
 
 
 
Approximate solution strategies for time-dependent problems 
 
 



X.1. Introduction 
 
Writing a complete review of numerical methods for the Navier-Stokes equations 
is probably an impossible task. The literature on numerical solutions of the Navier-
Stokes equations is overwhelming, and only a small fraction of the strategies is 
cited in this work. These strategies include modern stabilization techniques 
(pressure stabilization), penalty methods, artificial compressibility, and operator 
splitting techniques (explicit schemes, implicit velocity step). The latter family of 
strategies is popular and widespread and are known under many names in the 
literature, e.g., projection methods and pressure (or velocity) correction methods 
[Hua1999]. We end the overview of operating splitting methods with a framework 
where such methods can be viewed as special preconditioners in an iterative 
scheme for a fully implicit formulation of the Navier-Stokes equations. 

Our focus is to present the basic ideas of the most fundamental solution 
techniques for the Navier-Stokes equations in a form that is accessible to a wide 
audience. We consider approximate solution strategies where the Navier-Stokes 
equations are transformed to more common and tractable systems of partial 
differential equations. We will present the augmented Lagrangian method, basic 
operator-splitting algorithm for Newtonian and non-Newtonian fluids. 

The most of the numerical strategies are based on discretizing governing 
equations first in time, to get a set of simpler partial differential equations, and then 
discretizing the time-discrete equations in space. One fundamental difficulty with 
the this approach is that we derive a second-order Poisson equation for the pressure 
itself or a pressure increment. Such a Poisson equation implies a demand for more 
boundary conditions for p than what is required in the original system. 
 
 
X.2. A naive derivation of schemes for transient heat diffusion. The backward 
Euler method and the Crank−Nicolson. 
 
In this subsection, we consider the transient heat diffusion equation  
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The first method uses literal timestepping and the second is based on timestepping 
using differences.  

The backward Euler method uses the algorithm 
 

1
21

+
+ ∇=−

n
nn T

t

TT

δ
 (x.y) 

 



which is equivalent to  
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In the heart of the algorithm, the equation (x.y) is assembled and solved at each 
timestep. 

Let us now consider another algorithm for solving the heat equation.  
Firstly we introduce the Crank−Nicolson approximation 
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Next define nn TTT −= +1δ  and verify that Tδ  satisfies 
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You probably realise that the algorithms in this subsection are 

computationally inefficient in that they assemble and solve a sparse matrix system 
at each timestep. It would be much more efficient to assemble a large sparse matrix 
system once and only once, factorise it, store the factors, and use them in 
subsequent timesteps.  
 
 
X.3. Basic iterative scheme for two-phase flow of non-Newtonian fluids 
 
In this chapter a method for analyzing transient two-phase non-Newtonian flow is 
presented. We begin with the Navier-Stokes equation for non-Newtonian fluids 
represented by conservation of momentum  
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and conservation of mass 
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Let us consider two-phase flow of non-Newtonian fluids. The fluids are identified 
by the different value of the colour function C, which is convected by the flow field 
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Fluid properties such as the density and the viscosity are assumed to be distributed 
in the same manner as C, i.e. 
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Constitutive equation (extra-stress tensor) for non-Newtonian fluids we can write 
in the following form GS )(γη= , where G is the rate of strain tensor (rate of 

deformation tensor), T)( vvG ∇+∇= , and ( )γη &  is the viscosity, and γ&  is a scalar 

measure of rate of strain tensor defined by )(
2

1
GGtr=γ& . 

To solve transient two-phase flow of non-Newtonian fluids the above 
equations are linearized. Let r denote the number of linearization iterations and the 
superscript n denotes the previous time step and n+1 denotes the current time step. 
The linearization is carried out as follows: 
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Rearranging terms we obtain: 
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In the above: 
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In three dimensional case we can write equation (x.y) for i-th component of 

velocity vector in the following form 
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 The set of nonlinear simultaneous equations is solved by a siutable iterative 
process in which a simple convergence sequence and method of variable updating 
is employed. The procedure can be summarised in few steps.  

First we solve set of equations for unknown value  ( )r
niv 1+  (similarly for all 

components of velocity vector). Next we evaluate  
 

( ) ( )
( )r

ni

r
ni

r
ni

v

vv

1

1
11

+

−
++ −

 (x.y) 

 



at all node points. If these are within a specified tolerance, TOL, at all points then 
assume that the calculation is complete for time equal 1+nt . If the differences do not 

come within tolerance then update ( )r
niv 1+  
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where ω  is the weighting factor. For the simple arithmetic mean 5.0=ω . 
The process is repeated (r is increased) until TOL is satisfied at all points within 
domain and on all boundary points subject to gradient boundary conditions. 
We can apply mentioned algorithm for all 1+nt . 
 
 
X.4. Pressure correction scheme for non-isothermal flow 
 
The pressure correction scheme decouples the velocity and pressure terms of the 
momentum equations and implies the consideration of a Poisson equation for the 
pressure at each time step [Hua1999]. 
 Beginning with the dimensionless incompressible Navier-Stokes equations 
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and conservation of mass 
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where ( ) ( ) ( )vGvvSS  η==  is the extra stress tensor. 

With the midpoint rule or Crank Nicolson scheme we can write  
 

( ) nnnnnnn pPr
t

fvvSvv +∇−∇⋅−⋅∇=− ++ 11

1

δ
 (x.y) 

 
01 =⋅∇ +nv . (x.y) 

 
According to the projection concept we can always find an intermediate velocity 

field *v  which may satisfy the both following equations  
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Applying ∇ operator to the both sides of above equations and considering the 
equation of conservation of mass we obtain  
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It is now apart that a three step scheme can be summarized from the above 
operations, that is 
 
Step 1: 
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Step 3: 
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Such a scheme is specifically designed do deal with the incompressibility 
constraint and introduces a Poisson equation for the pressure at each time step. 
 Using a semi-implicit pressure correction scheme we can obtain the 
following steps 
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Step 1b: 
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Step 3: 
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where nnn ppq −= ++ 11  and 21=θ , 21+nv  is a half step velocity field. 

 For incompressible flow under non-isothermal conditions, the energy 
conservation equation must also be included in the formulation 
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In the non-isothermal case a semi-implicit pressure correction procedure can be 
modified by adding following formulas in Step 1a and 1b 
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X.5. 6. The augmented Lagrangian method 
 
The flow equations have the difficulty that the pressure p, required in the 
momentum equations, does not occur explicitly in the continuity equation. Rather, 
the continuity equation acts like a constraint to the momentum equations, and this 



constraint determines the pressure. The augmented Lagrangian method is a 
refinement of the penalty method [Hua1999]. In the penalty method, a fictitious 
representation for the pressure in the continuity equation is introduced 
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If Pen is large, then v⋅∇  is forced to be small, therefore approximately satisfying 
the continuity equation.  

 

We introduce a timestepping algorithm to solve the above equations.  

Step 1. In each timestep, we first solve thermal diffusion equation by assuming a 
given velocity field and using an implicit method to handle the time derivative. We 
have  
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which can be expressed as a PDE for nθ , where ( )nn tθθ = , ( )nn tvv =  and n 
denotes n-th time step. 
 
Step 2. The momentum equation is then solved using an implicit method to handle 

the time derivative 
t∂

∂v
 and the augmented Lagrangian method to handle the 

incompressibility constraint. The second step of actual algorithm that is 
implemented is obtained by setting  
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in the momentum equation.  
This results in the iterative algorithm: 
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nv  by solving the equation: 

 
( )

( ) ( ) ( )( )( )
( ) ( ) 0kS

vvv
vv

=+⋅∇+∇−

+⋅∇∇=∇⋅+−

−−

−−

n
i

n
i

n

i
n

i
n

i
n

n
i

n

PrRaPrp

Pen
t

θ
δ

11

11

 (6.4) 

 
with ( )

1
0

−= nn vv  and ( )
1

0
−= nn pp ; 

- calculate the p∆  using the equation: 
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- the pressure is updated using: 
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During each timestep, several iterations (for example maxi ) of the solution of the 
discretised momentum equation are required in order to obtain a converged 
velocity field. The number of iteration is pointed by superscript of velocity vector 
and pressure term.  
 
Step 3. Update:  
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The algorithm, if it converges, does not introduce any further error and provides an 
answer for the pressure. It can be implemented using finite element method 
[Hue1975, Tay1981]. 
 
X.6. Basic operator-splitting algorithm for Newtonian fluid 
 
The most popular numerical solution strategy today for the Navier-Stokes 
equations are based on operator-splitting [Li1991; Li1993; Luo1996]. This means 
that the system is split into a series of simpler, familiar equations, such as 
advection equations, diffusion equations, advection-diffusion equations, Poisson 
equations, and explicit or implicit updates. Efficient numerical methods are much 
easier to construct for these standard equations that for the original system directly. 
In particular, the evolution of the velocity consists of two main steps. First we 
neglect the incompressibility condition and compute a predicted velocity. 
Thereafter, the velocity is corrected by performing a projection onto the divergence 
free vector field. 

The Navier−Stokes momentum equation is: 
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For the unsteady Navier−Stokes equation, we solve (7.1) as an initial value 

problem, that is, at time step n, we know the velocity value nv , and we obtain the 



velocity at time step n+1 by solving for the velocity increment vδ  so that 
vvv δ+=+ nn 1 .  From the Navier−Stokes equation, we see that vδ  satisfyies: 
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where due to the nonlinear convection term, the v on the RHS is the latest updated 
velocity value from nv , that is vvv δ+= n .  The pressure p will be solved through 
the continuity equation in a way that is explained later. 
The left-hand side of (7.2) can be split into two principal operators as follows: 
 

( ) ( )

vkvv
v

vv
v

∇⋅∇++∇−




 ∇⋅+
∂
∂−

=−+
∂

∂

Pr PrRap 
t

LL
t dc

θ

δδδ

 (7.3) 

 
where ( )vδcL  and ( )vδdL  are the convective and diffusive operators, respectively. 
This equation for velocity increment can be split as follows: 
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We can set up numerical schemes to integrate equations (7.4) and (7.6) 
respectively. We define the numerical scheme for equation (7.4) as cN and the 

scheme for equation (7.6) as dN . Equation (7.3) is advanced from time step n to 
n+1 by the two-stage convection-diffusion split: 
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Alternatively we can set up a symmetric sequence of the numerical schemes to 
have 
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In our Navier−Stokes equation, the convective operator cL is nonlinear.  

Therefore, a local iteration loop is needed for equation (7.8). The numerical 
scheme cN  will be a fully implicit backward Crank−Nicolson method.  The three 

components of velocity vector v  can be solved separately by cN . In this way, less 
computer memory is required for inverting the linear matrices.   

For the i-th component of vector v , iv , cN  can be shown to be 
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where k denotes the k-th iterative step for the nonlinear convective operator, n 
denotes n-th time step , and   
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Similarly, the numerical scheme dN  can be set up for the i-th component in 
approach: 
 

)k(
n,ii

i

)k(
n,i

k

j

)j(
i

)k(
i

)k(
i

vPrk PrRa
x

p
 

v
t

v

v
t

v

1

1

1

0

+

+

−

=

∇⋅∇++
∂
∂−



















∇⋅+−=∇⋅∇−
∑

θ

δ

δ
δ

δ
δ

v

 (7.11) 

 

where 1, +niv  is always updated at each step through (7.10).  

 
X.7. Basic operator-splitting algorithm for non-Newtonian fluid 
 
The Navier−Stokes momentum equation for non-Newtonian fluid is: 
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If we consider extra stress tensor S  as a function of the deformation rate tensor 

G  and viscosity µ  as a function of velocity v we can write 
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For the unsteady Navier−Stokes equation, we solve (8.1) as an initial value 

problem, that is, at time step n, we know the velocity value nv , and we obtain the 
velocity at time step n+1 by solving for the velocity increment vδ  so that 

vvv δ+=+ nn 1 .  From the Navier−Stokes equation, we see that vδ  satisfies: 
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where due to the nonlinear convection term, the v on the RHS is the latest updated 
velocity value from nv , that is vvv δ+= n .  The pressure p will be solved through 
the continuity equation in a way that is explained later. 
The left-hand side of (8.3) can be split into two principal operators as follows: 
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where ( )vδcL  and ( )vδdsL  are the convective and diffusive operators, respectively. 
This equation for velocity increment can be split as follows: 
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** vvv δ+=  (8.6) 
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We can set up numerical schemes to integrate equations (8.5) and (8.7) 
respectively. We define the numerical scheme for equation (8.5) as cN and the 

scheme for equation (8.7) as dsN . Equation (8.4) is advanced from time step n to 
n+1 by the two-stage convection-diffusion split: 
 

vvv δcdsnn NN+=+1  (8.8) 
 
Alternatively we can set up a symmetric sequence of the numerical schemes to 
have 
 

vvv δcdsdscnn NNNN+=+2  (8.9) 
 
In our Navier−Stokes equation operators cL and dsL are nonlinear.  Therefore, 

a local iteration loop is needed for equation (8.8-8.9). The numerical scheme cN  

will be a fully implicit backward Crank−Nicolson method.   
 

Numerical scheme cN  can be shown to be 
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where k denotes the k-th iterative step for the nonlinear convective operator, and   
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Similarly, the numerical scheme dsN  can be set up in approach: 
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where 1+nv  is always updated at each step through (8.11).  
 

Alternatively the three components of velocity vector v  can be solved 
separately by cN . In this way, less computer memory is required for inverting the 

linear matrices. For the i-th component of vector v  numerical schemes cN can be 
shown to be 
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where 
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Similarly, the numerical scheme dsN  can be set up for the i-th component in 
approach: 
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where 1, +niv  is always updated at each step through (8.14).  

 
In this algorithm, we have assumed that pressure p is known, and mass 

conservation is satisfied. The pressure p needs to be obtained through an equation 
that is derived from the mass conservation law.  For incompressible fluid flows, 
this mass conservation law produces the continuity equation 



 
0=⋅∇ v  (8.16) 

 
An artificial compressibility method is used here to derive the equation for 
pressure. From the continuity equation, we can assume that the pressure p satisfies 
a pseudo-transient state 
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where parameter τ is the pseudo-time.  Through a second-order Taylor expansion 
of the term τ∂∂ /p  and substitution of the Navier−Stokes momentum equation, we 
can arrive at a Poisson equation for pressure: 
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where τ∆  is the pseudo-time step.   
 


