ROK AKADEMICKI: 2021/2022 KIERUNEK: MECHATRONIKA SEMESTR: I PRZEDMIOT: OBLICZENIOWA ANALIZA UKŁADÓW MECHANICZNYCH FORMA ZAJĘĆ: LABORATORIUM AUTOR: DANIEL KRUSZEWSKI – KOŚCIUSZENKO NR ALBUMU: 141750 TEMATYKA: ANALIZA MES DOTYCZĄCA WYMIANY CIEPŁA DLA ZAMODELOWANYCH RADIATORÓW DATA OPRACOWANIA: 15.06.2022

.....

1. Zaprojektowanie modeli radiatorów w programie SOLIDWORKS

• kroki tworzenia modeli

W programie SOLIDWORKS zostały zaprojektowane dwa modele radiatorów różniących się między sobą ilością żeber, a co się z tym wiąże także odstępami między nimi. Wymiary gabarytowe były określone na 100 x 100 x 20 [mm]. Geometria oraz poszczególne wymiary radiatorów zostały zamieszczone w kolejnym podpunkcie.

Zbudowanie modeli opierało się w kolejności na:

- zamodelowaniu prostopadłościanu będącego podstawą radiatora,

- zamodelowaniu powierzchni (bazy) pod podstawą radiatora, na którą będzie oddziaływać bezpośrednio temperatura z wybranego komponentu (np. karty graficznej, procesora, etc.),

- zamodelowaniu ścianek (żeber) radiatora.

Następnie przygotowane modele zostały wyeksportowane do plików z roszerzeniem .step, który umożliwia ich dalszy import do programu COMSOL Multiphysics.

• opis modeli (geometria, wymiary)

a) model I – 21 żeber, odstęp między żebrami wynoszący 2,9 [mm]

Rys.1.1 Widok modelu I radiatora wraz z wymiarami gabarytowymi.

Rys.1.2 Wymiary powierzchni bezpośredniej wymiany ciepła.

Rys.1.3 Wymiary żeber.

Rys.1.4 Długość odstępu między żebrami.

b) model II – 15 żeber, odstęp między żebrami wynoszący 5 [mm]

Rys. 1.5 Widok modelu II radiatora wraz z wymiarami gabarytowymi.

Rys.1.6 Wymiary powierzchni bezpośredniej wymiany ciepła.

Długość: 5mm

Rys.1.7 Wymiary żeber.

Rys.1.8 Długość odstępu między żebrami.

2. Model matematyczny przeprowadzonej analizy MES w programie COMSOL Multiphysics. Równania oraz warunki brzegowe

• Ogólne równanie przewodzenia ciepła:

$$\rho C_p \left(\frac{\partial T}{\partial t} + (v \cdot \nabla)T \right) + \nabla \cdot (-k\nabla T) = Q$$
(2.1)

Gdzie:

- ρ gęstość materiału w temperaturze T [$\frac{kg}{m^3}$],
- C_p ciepło właściwe przy stałym ciśnieniu [$\frac{J}{kg\cdot K}$],
- T temperatura [K],
- v wektor prędkości [$\frac{m}{s}$],

Q – strumień ciepła powstającego wskutek przewodzenia, jakie powstaje w wyniku plastycznego odkształcania się metalu albo w wyniku przemian fazowych w strukturze materiału [$\frac{W}{m^3}$]

Prawo Fouriera

$$q = -k\nabla T \tag{2.2}$$

Gdzie:

k – współczynnik przewodzenia ciepła [$\frac{W}{m \cdot K}$],

- ∇T gradient temperatury
- Prawo Newtona dot. konwekcyjnego strumienia ciepła

$$q_0 = h(T_{ext} - T) \tag{2.3}$$

Gdzie:

 q_0 – gęstość strumienia ciepła [$\frac{W}{m^2}$]

$$T_{ext}$$
 – temperatura otoczenia ("temperatura daleko od modelowanej domeny",
temperatura odniesienia) [K]

 $h - \text{współczynnik przejmowania ciepła } \left[\frac{W}{m^{2} \cdot K}\right]$

• Równanie temperaturowe:

$$T = T_0 \tag{2.4}$$

3. Właściwości wybranego materiału do budowy radiatorów

Wybranym materiałem jest stop aluminium 1050 o następujących właściwościach:

a) skład chemiczny

Al	min. 99,50
Fe	max. 0,40 %
Si	max. 0,25 %
Zn	max. 0,07 %
Ti	max. 0,05 %
Mg	max. 0,05 %
Mn	max. 0,05 %
Cu	max. 0,05 %
Inne	max. 0,03 %

b) właściwości fizyczne

Gęstość:	g/cm ³	2,70
Moduł sprężystości E:	MPa	69000
Moduł sprężystości poprzecznej G:	MPa	25900
Liczba Poissona:		0.33
Temperatura krzepnięcia:	°C	645
Temperatura płynięcia:	°C	658
Ciepło właściwe:	J/kgK	899
Współczynnik rozszerzalności cieplnej:	µm/mK	23,5
Opór właściwy:	nΩm	29
Przewodność cieplna:	W/mK	229
Przewodność elektryczna:	%IACS	59,5

4. Wygenerowana siatka modeli

Symulacja została przeprowadzona dla obu modeli z dwoma różnymi rozmiarami elementów skończonych : *fine* oraz *finer*. We wszystkich symulacjach na modele

została nałożona siatka składająca się z trójkątnych elementów skończonych. Poniżej przedstawione zostały parametry dla poszczególnych wariantów symulacji:

a) model I – 21 żeber, odstęp między żebrami wynoszący 2,9 [mm]:

-Rys.4.1 Siatka fine: liczba elementów skończonych = 37097

- Rys.4.2 Siatka finer: liczba elementów skończonych = 50182

b) model II – 15 żeber, odstęp między żebrami wynoszący 5 [mm]:

- Rys.4.3 Siatka fine: liczba elementów skończonych = 27625

- Rys.4.4 Siatka finer: liczba elementów skończonych = 37456

5. Ustawienia przeprowadzonych symulacji

- Symulacja zależna od czasu ("time dependent simulation"),
- Czas trwania symulacji 0 120 [s] z krokiem co 0,1 [s]
- Konwekcyjny strumień ciepła przyjęta wartość współczynnika przejmowania ciepła $h = 40 \left[\frac{W}{m^2 \cdot K}\right],$

Rys.5.1 Powierzchnie (granice) konwekcyjnego strumienia ciepła.

- Temperatura otoczenia $T_{ext} = 293,15 \ [K] = 20 \ [^{\circ}C],$
- Temperatura powierzchni, która styka się z wybranym, chłodzonym komponentem $T = T_0 = 373,15$ [K] = 100 [°*C*].

Rys.5.2 Powierzchnia na której została zdefiniowana temperatura pochodząca od zewnętrznego źródła.

6. Otrzymane wyniki analizy MES dla poszczególnych wariantów przeprowadzonych badań

a) model I – 21 żeber, odstęp między żebrami wynoszący 2,9 [mm]:

Rys.6.1 Otrzymane rozkłady temperatur dla modelu I (siatka fine) w czasie 1s.

Rys.6.2 Otrzymane rozkłady temperatur dla modelu I (siatka finer) w czasie 1s.

Rys.6.3 Zaznaczone punkty dla których wykonano wykresy zależności temperatury od czasu trwania symulacji (umieszczone na następnej stronie).

Rys.6.4 Zależność temperatury w danych punktach modelu od czasu trwania symulacji dla modelu I (siatka fine).

Rys.6.5 Zależność temperatury w danych punktach modelu od czasu trwania symulacji dla modelu I (siatka finer).

b) model II – 15 żeber, odstęp między żebrami wynoszący 5 [mm]:

Rys.6.6 Otrzymane rozkłady temperatur dla modelu II (siatka fine) w czasie 1s.

Rys.6.7 Otrzymane rozkłady temperatur dla modelu II (siatka finer) w czasie 1s.

Rys.6.8 Zależność temperatury w danych punktach modelu od czasu trwania symulacji dla modelu II (siatka fine).

Rys.6.9 Zależność temperatury w danych punktach modelu od czasu trwania symulacji dla modelu II (siatka finer).

7. Podsumowanie, spostrzeżenia, wnioski

- 1. Symulacje z różnymi rozmiarami elementów w wygenerowanych siatkach zostały przeprowadzone w celu zbadania ich wpływu na otrzymane wyniki. Po analizie otrzymanych zależności można wnioskować, iż różnice są nieznaczne. W niektórych fragmentach uzyskanych charakterystyk po dokładnej analizie w programie COMSOL widać różnice o maksymalnie 0,2 [°C] w części, gdzie stabilizuje się temperatura dla badanych punktów. Zatem, dla przeprowadzonych doświadczeń nie było konieczności zastosowania gęstszej siatki, bowiem obciążyło to zauważalnie procesor komputera i wydłużyło czas obliczeniowy.
- 2. Po dokładnym przeanalizowaniu otrzymanych zależności temperatur w danych punktach modeli zauważono:

dla modelu I (z większa ilością żeber i mniejszym odstępem między nimi) zaobserwowano niższą końcową temperaturę osiąganą dla badanych punktów o około
 3 - 4 [°C] względem modelu II (z mniejszą liczbą żeber i większym odstępem między nimi)

 - czas osiągnięcia końcowej temperatury (tj. 92 [°C] dla modelu II oraz 89 [°C] dla modelu I) był o ok. 5 sekund dłuższy dla modelu I

- Podsumowując powyższe punkty można stwierdzić, iż na podstawie przeprowadzonych symulacji lepszymi parametrami geometrycznymi wpływającymi na wymianę ciepła (chłodzenie danego komponentu np. komputera) charakteryzuje się model I.
- 4. Po przeanalizowaniu różnic w temperaturach osiąganych w zaznaczonych punktach radiatora nasuwa się pomysł, iż warto byłoby zmodyfikować (zwiększyć) wysokość żeber w rozpatrywanych radiatorach i dokonać wówczas dalszych badań symulacyjnych.
- Cykl ćwiczeń laboratoryjnych z Obliczeniowej analizy układów mechanicznych stanowił bardzo dobre powtórzenie, usystematyzowanie oraz rozszerzenie wiedzy z Metody Elementów Skończonych, którą poznaliśmy podczas studiów I-wszego stopnia.