

POLITECHNIKA POZNAŃSKA

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA

Metoda Elementów Skończonych PROJEKT COMSOL Multiphysics 3.4

Prowadzący: dr hab. inż. Tomasz Stręk prof. PP Wykonali:

Spis treści

1.		ROZKŁAD TEMPERATURY W PATELNI	3
A	4)) WSTĘP	
E	3)) PRZEBIEG SYMULACJI	5
		I. Patelnia wykonana ze stali	5
		II. Patelnia wykonana z aluminium	
C	:)) WNIOSKI	10
2.		ANALIZA UGIĘCIA TEOWNIKA ORAZ CEOWNIKA	10
A	\)) WSTĘP	10
E	3)) Przebieg symulacji	12
		I. Ceownik	12
		II. Dwuteownik	15
C	:)) Wnioski	17
3.		ANALIZA PRZEPŁYWU AEORDYNAMICZNEGO NA PRZYKŁADZIE SKRZYDŁA SAMOLOTU	17
A	٩)) WSTĘP	17
E	3)) PRZEBIEG SYMULACJI	17
		I. Model pierwszy	
		II. Model drugi	
		III. Model trzeci	
		IV. Model czwarty:	
C	:)) WNIOSKI	

1. Rozkład temperatury w patelni.

a) <u>Wstęp</u>

Do rozwiązania problemu program COMSOL używa następującego równania:

$$\delta_{ts}\rho C_p \partial T / \partial t + \nabla \cdot (-k\nabla T) = Q \cdot \rho C_p u \cdot \nabla T$$

gdzie:

 δ_{ts} – współczynnik skalowania w czasie, ρ – gęstość $[\frac{kg}{m^3}]$, C_p – pojemność cieplna, t – czas [s] k - tensor przewodności cieplnej $[\frac{W}{m} \cdot K]$ Q - źródło ciepła [J], T – temperatura [K], ∇ – operator Nabla.

Analizie została poddana patelnia wykonana z dwóch różnych materiałów – stali oraz aluminium. Celem eksperymentu jest ustalenie rozkładu ciepła w naczyniu. Model patelni został wykonany w programie Autodesk Inventor Professional 2016:

Po zapisaniu w formacie .stp została zaimportowana w programie COMSOL:

Symulacja została wykonana w module: Heat Transfer/Convection and Conduction/Transient analysis:

	in the second	
Space dimension:	3D	~
Application Moc COMSOL M CONSOL M Electro Electro Heat Ti Corvec Corve Corvec Corvec C	les ultiphysics cs tion and Diffusion magnetics manics ansfer exection and Conduction Transient analysis Steady-state analysis duction ral Mechanics des ed Mesh Thermal Interaction mermal Interaction	Heat Transfer Heat Transfer Description: Heat transfer through convection and conduction with heat flux, convective, and temperature boundary conditions. Transient analysis in 3D.
Dependent variable	s: T	
Application mode na	ime: cc	
tiement:	Lagrange - Quadratic	✓ Multiphysics

b) <u>Przebieg symulacji.</u>

I. <u>Patelnia wykonana ze stali.</u>

Pierwszą czynnością był wybór z bazy danych materiału oraz określenie temperatury początkowej modelu, tak jak to przedstawiają to dwa kolejne screeny:

luarion				
_s pC _p ∂T/∂t + ∇·(-k∇T) :	= Q - ρC _ρ u ·∇Τ			
= temperature				
Ibdomains Groups	Physics Init Eleme	nt Color		
ubdomain selection	Thermal properties	and heat sources/sinks		
^	Library material:	A514 (UNS K11872) 🗸	Load	
	Quantity	Value/Expression	Unit	Description
	Õ _{te}	1	1	Time-scaling coefficient
	k (isotropic)	k(T[1/K])[W/(m*K)]	W/(m•K)	Thermal conductivity
	(anisotropic)	0.025 0 0 0 0.025 0 0 0 0.02	25 W/(m•K)	Thermal conductivity
	ρ	rho(T[1/K])[kg/m^3]	kg/m ³	Density
	C _n	C(T[1/K])[J/(kg*K)]	J/(kg+K)	Heat capacity at constant pressure
~	γ	1	1	Ratio of specific heats
roup:	Q	0	W/m ³	Heat source
Select by group	u	0 0 0	m/s	Velocity field
	Autoficial Diff			
odomain Settings - Co	nvection and Conduction	n (cc)	ОК	Cancel Apply Help
odomain Settings - Co Equation 5 ₁₅ pC _p ∂T/∂t + ⊽{-k⊽T)	nvection and Conduction = $Q - \rho C_p \mathbf{u} \cdot \nabla T$	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5 _{t5} pC _p ∂T/∂t + ⊽·(-k⊽T) T = temperature	nvection and Conductior = Q - ρC _p u ∙⊽T	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5 _{ts} pC _p ∂T/∂t + ⊽-(-k⊽T) 7 = temperature Fubdomains Groups	nvection and Conduction = Q - pC _p u • ⊽T Physics Init Eleme	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5 _{ts} pC _p ∂T/∂t + ⊽{-k⊽T) Г = temperature Subdomains Groups Subdomain selection	nvection and Conduction = Q - pC _p u ·⊽T Physics Init Eleme Initial value	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5 ₁₅ pC _p ∂T/∂t + ⊽·(-k⊽T) 1 = temperature Subdomains Groups Subdomain selection	nvection and Conduction = Q - pC _p u·⊽T Physics Init Eleme Initial value T(t _n) 293	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5 _{ts} pC _p ∂T/ðt + ⊽·(-k⊽T) i = temperature iubdomains Groups Subdomain selection 1	nvection and Conduction = Q - $\rho C_p \mathbf{u} \cdot \nabla T$ Physics Init Eleme Initial value $T(t_0)$ 293	n (cc)	OK	Cancel Apply Help
odomain Settings - Co iquation 5 _{t5} pC _p ∂T/∂t + ⊽·(-k⊽T) i = temperature iubdomains Groups 5ubdomain selection	nvection and Conduction = Q - $\rho C_{p} \mathbf{u} \cdot \nabla T$ Physics Init Eleme Initial value $T(t_0)$ 293	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5 _{t5} pC _p ∂T/∂t + ⊽·(-k⊽T) i = temperature iubdomains Groups 5ubdomain selection 1	nvection and Conduction = Q - $\rho C_{p} \mathbf{u} \cdot \nabla T$ Physics Init Eleme Initial value $T(t_{0})$ 293	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation S _{ts} pC _p ∂T/∂t + ⊽·(-k⊽T) I = temperature Subdomains Groups Subdomain selection	nvection and Conduction = Q - $\rho C_p \mathbf{u} \cdot \nabla T$ Physics Init Eleme Initial value $T(t_0)$ [293]	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5 _{ts} pC _p ∂T/∂t + ⊽-(-k⊽T) I = temperature Subdomains Groups Subdomain selection	nvection and Conduction = Q - pC _p u· ∇ T Physics Init Eleme Initial value T(t ₀) 293	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5 _{ts} pC _p ∂T/∂t + ⊽·(-k⊽T) I = temperature Subdomains Groups Subdomain selection	nvection and Conduction = Q - pC _p u·∇T Physics Init Eleme Initial value T(t ₀) 293	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5 _{ts} pC _p ∂T/∂t + ⊽-(-k⊽T) I = temperature Subdomains Groups Subdomain selection	nvection and Conduction = Q - pC _p u· ∇ T Physics Init Eleme Initial value T(t ₀) 293	n (cc)	OK K Temperatu	Cancel Apply Help
odomain Settings - Co Equation 5 _{ts} pC _p ∂T/∂t + ⊽-(-k⊽T) I = temperature Subdomains Groups Subdomain selection	nvection and Conduction = Q - pC _p u·⊽T Physics Init Eleme Initial value T(t ₀) 293	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5t _s pC _p ∂T/∂t + ⊽-(-k⊽T) I = temperature Subdomains Groups Subdomain selection	nvection and Conduction = Q - pC _p u· ∇ T Physics Init Eleme Initial value T(t ₀) 293	n (cc)	OK	Cancel Apply Help
odomain Settings - Co Equation 5t _s pC _p ∂T/∂t + ∇·(-k⊽T) I = temperature Subdomains Groups Subdomain selection 1 Group:	nvection and Conduction = Q - $pC_p \mathbf{u} \cdot \nabla T$ Physics Init Eleme Initial value $T(t_0)$ 293	n (cc)	OK	Cancel Apply Help

Kolejną czynnością było określenie warunków brzegowych, czyli zaznaczenie, które powierzchnie mają bezpośredni styk ze źródłem ciepła. W naszym przypadku jest to spód patelni:

COMOL Multiplyici - Use Tree Lat Other Phys Comol Series Comol Series	mil / Convection and Conduction is: Much Solver Patraecessing is: Much Solver Patraecessin	cc: (Linked) Multiphysics High Multiphysics High	
< >> [untited]	Grap: Select by grape Interior boundaries	OK Cancel Apply Hep	0 0 0

Następnie został określony czas działania temperatury: 600 sekund, rejestrowany co 1 sekundę:

nalysis:	General Time Stepping	Advanced			
Transient 🗸 🗸	Time stanning				
Auto select solver	Times		0.1.600		
iolver:	Relative tolerance		0.1.600		
Stationary	Absolute tolerance:		0.0010		
ime dependent		mbarc			
igenvalue		inders.			
itationary segregated	Linear system solver				
arametric segregated	Linear system solver:	GMRES	~		
	Preconditioner:	Algebraic multion	id 🗸		
	Quality of multigrid hie	erarchy: 3			
~					
Adaptive mesh refinement	Memory efficiency		Precond. quality	Settings	
Optimization	Matrix symmetry:	Nonsymmetric	~		

Kolejnym krokiem było wygenerowanie siatki składającej się z 13095 elementów:

Wyniki analizy:

Rozkład temperatury w naczyniu po 3 minutach:

Rozkład temperatury w naczyniu po 10 minutach:

II. <u>Patelnia wykonana z aluminium.</u>

W programie został zmieniony materiał, pozostałe parametry pozostały bez zmian:

δ _{ts} pC _p ∂T/∂t 4 T = temperat	+ ∇·(-k∇T) = Q	· ρϹ _ϼ Ϥ·Ͳͳ					
5ubdomains	Groups	Physics Init Eleme	nt Color				
Subdomain se	election	Thermal properties a	and heat sour	ces/sinks			
1	^	Library material: 2	2014 (UNS A	92014) 🗸	Loa	ad	
		Quantity	Value/Exp	ression		Unit	Description
		õ _{ts}	1			1	Time-scaling coefficient
		(isotropic)	k(T[1/K])	[W/(m*K)]		W/(m•K)	Thermal conductivity
		🔿 k (anisotropic)	0.025 0 0 0	0.025 0 0 0 0	.025	W/(m·K)	Thermal conductivity
		ρ	rho(T[1/K])[kg/m^3]		kg/m ³	Density
		C_	C(T[1/K])	[J/(kg*K)]		J/(kg·K)	Heat capacity at constant pressure
	~	v	1			1	Ratio of specific heats
Group:	×.	Q	0			W/m ³	Heat source
Select by	/ group	u	0 0	0		m/s	Velocity field
Active in	this domain	Artificial Diffusio	n				

Wyniki analizy:

Rozkład temperatury w naczyniu po 3 minutach:

Rozkład temperatury w naczyniu po 10 minutach:

c) <u>Wnioski</u>

Jak wynika z przeprowadzonej analizy, patelnia wykonana ze stali nagrzewa się znacznie wolniej. Po 3 minutach nagrzany został jedynie spód naczynia. Wskutek dalszego nagrzewania wzrasta temperatura ścianek bocznych, natomiast temperatura rączki pozostaje bez zmian.

Patelnia aluminiowa nagrzewa się znacznie szybciej, gdyż już po 3 minutach nagrzana była bardziej, niż patelnia ze stali po 10 minutach. Temperatura rączki w przeciwieństwie do poprzedniego przypadku, zwiększyła się aż o 100K. Mogło by to być niebezpieczne dla użytkownika takiego naczynia, dlatego zwykle stosuje się rączki wykonane z innych materiałów.

2. Analiza ugięcia teownika oraz ceownika.

a) <u>Wstęp</u>

Przeprowadzona symulacja miała na celu porównanie dwóch belek: ceownika i dwuteownika zgodnych z normami DIN 1025 oraz DIN1026-1. Obie belki mają długość 60cm i są wykonane ze stali konstrukcyjnej. Elementy zostały obciążone na końcach obciążeniem stałym o wartości 1000N. Warunki dla obu belek są takie same:

- jednakowa długość równa 0,4m
- jednakowa wysokość równa 160mm
- jednostronne utwierdzenie

• obciążenie jednakową siłą: 1kN

Modele zostały wykonane w programie Autodesk Inventor Professional 2016:

b) <u>Przebieg symulacji</u>

I. <u>Ceownik.</u>

Symulacja została wykonana w module: Structural Mechanics/Solid, Stress-Strain/Static analysis:

ew Model	library Use	Models Open Settings			
Space dimer	nsion:	3D	~		
Application	tion Modes MSOL Multiph Acoustics Convection a Electromagn Fluid Dynam Heat Transfo Structural M Solid, St Stat Stat Electro-Ther Fluid-Therma variables: mode name:	ysics and Diffusion etics cs er echanics ress-Strain c analysis nfrequency analysis sient analysis esh mal Interaction al Interaction u v w sld	×	Description: Study the displacements, stresses, and strains that results in a 3D body given applied loads and constraints. Linear stationary analysis, both material, load, and constraints being constant in time.	
Application mode name:		Lagrange - Quadratic	~	Multiphysics	

Model po zaimportowaniu do programu COMSOL:

Dobór materiału, z którego został wykonany ceownik:

1

ubdomains (Groups	Material Co	nstraint I	Load Damping	Init E	lement	Color
jubdomain sel	ection	Material set	tings				
1	^	Library mat	erial:		~	Loa	d
		Quantity	Value/E	xpression		Unit	Description
		E	2.1e5			Pa	Young's modulus
			0.3	.3			Poisson's ratio
		ρ	rho(T[1/	K])[kg/m^3]		kg/m ³	Density
	×						
Group:	4						
Select by	group						
Active in t	his domain						

Subdomains Groups	Material Co	nstraint Load Damp	ing Init Element Color
Subdomain selection	Load setting Quantity F _x F _y F _z	JS Value/Expression 0 0 þ00	UnitDescriptionN/m³Body load (force/volume) x-dir.N/m³Body load (force/volume) y-dir.N/m³Body load (force/volume) z-dir.
Group:			

Po przypisaniu stali do modelu zdefiniowano warunki brzegowe. Ściana nr 4 została utwierdzona, a ściana nr 3 obciążona siłą zginającą o wartości 1kN, działającą w osi x:

Kolejnym krokiem jest wygenerowanie siatki składającej się z 10050 elementów:

Wyniki analizy: Odkształcenie końcowe ceownika [mm]:

II. Dwuteownik

Do programu został zaimportowany dwuteownik. Wszystkie czynności zostały powtórzone, jak w wypadku ceownika.

Element po wygenerowaniu siatki składającej się z 10798 elementów:

Wyniki analizy:

Odkształcenie końcowe dwuteownika [mm]:

Boundary: Total displacement [m] Deformation: Displacement

Max: 1.052e-7

c) <u>Wnioski.</u>

Z porównania ugięcia ceownika oraz dwuteownika wynika, zgodnie z oczekiwaniami, iż ugięcie tego pierwszego, przy jednakowych parametrach jest zdecydowanie większe. Maksymalne ugięcie ceownika wyniosło 0,356 mm, natomiast dwuteownika 1x10⁻⁷ mm, czyli ponad dwukrotnie większe.

3. Analiza przepływu Aeordynamicznego na przykładzie skrzydła samolotu.

a) <u>Wstęp.</u>

Przy badaniu przepływu powietrza rozpatrywaliśmy elementy występujące w życiu codziennym, wykorzystywane do badanie aerodynamiczności przepływu powietrza wokół skrzydła samolotu. Skupiliśmy się na czterech różnych kształtach skrzydła: podczas lotu w linii prostej, podczas wznoszenia się i opadania samolotu, a także konstrukcja, która nie jest stosowana.

b) <u>Przebieg symulacji.</u>

Analizy dokonaliśmy w module Fluid Dynamics/Incompressible Navier-Stokes/Steady-state analysis:

New Mode	l Library Use	r Models Open Settings		
Space dim	ension:	2D	~	
Applic	ation Modes OMSOL Multiph Acoustics Convection Electromagn Fluid Dynam Fluid Dynam Fluid Dynam Tran Heat Transf Structural M PDE Modes Deformed M Electro-Ther Fluid-Therm. C/DC Module	uysics and Diffusion etics essible Navier-Stokes essible Navier-Stokes essible Navier-Stokes essible Navier-Stokes er echanics esh mal Interaction al Interaction u v p	Fluid Dynamics	
Application	n mode name:	ns		_
Element:		Lagrange - P2P1	✓ Multiphysics	

Ze względu na trudność uzyskania szczegółowych informacji odnośnie wymiarów od producentów, zamodelowaliśmy w programie COMSOL elementy, które odzwierciedlają kształt zewnętrzny bez zachowania wielkości wymiarowych.

I. Model pierwszy.

II. Model drugi.

III. Model trzeci.

		ж Т	2	-		

IV. Model czwarty:

Parametry są takie same dla wszystkich przypadków:

- Prędkość poruszania się samolotu: 270 m/s
- Temperatura otoczenia: 280 K
- Ciśnienie powietrza: 1 atm
- Kierunek lotu w prawo

Kolejne zdjęcia pokazują ustawienia symulacji.

Określenie gazu opływowego:

Equations p u·∇u = ∇· ∇• u = 0	[-p I + ŋ(⊽ u +	(⊽u) ^T)]+F					
Subdomains	Groups	Physics I	nit Eler	ment Color			
Subdomain s	selection	Fluid prop Library n Quantit P ŋ F _x F	oerties a naterial: y Valu rhc eta 0	nd sources/sinks Air, 1 atm ue/Expression p(p[1/Pa],T[1/K a(T[1/K])[Pa*s]	Unit kg/m ³ N/m ³	Load Description Density Dynamic viscosity Volume force, x-d	lir,
Group: G	ay group n this domain		Artificia	al Diffusion	NJM-	volume force, y-u	NF 1 ~

Określenie temperatury otoczenia:

Name	Expression	Value	Description	
Т	280	280		
		2		

Ustawienie wejścia (Inlet) i prędkości powietrza:

		Boundary Settings - Incor	mpressible Navier-Stokes (ns) X		
%.	80 81	Equation $\mathbf{u} = -U_0 \mathbf{n}$		112	20
		Boundaries Groups	Coefficients Color/Style		
		Boundary selection	Boundary conditions Boundary type: Inlet	at.	50
		2 3 4	Boundary condition: Quantity Value/Expression Unit Description		
3		5	0 u0 0 m/s x-velocity	-	2
		Group:	U ₀ Z70 m/s Normal inflow velocity		
		Select by group			
8.	÷			-	29
			OK Cancel Apply Help		

Ustawienie wyjścia (Outlet):

13	1	18	Providence Cattioner Incommendation National Cat		~ 1	18
	8		Equation $n(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)\mathbf{n} = 0, \mathbf{n} = \mathbf{n}.$	Kes (115)		11
			Boundaries Groups Coefficients Col Boundary selection Boundary condit	ar/Style		
5 16	8		1 A Boundary type: 2 Boundary condition Boundary condition 3 Quantition Quantition 5 P0 P0	Outlet ion: Pressure, no viscous stress y Value/Expression 0 Pa Pressure		61
1 68	8	18	7 Group:			N
18	2	8	Interior boundaries	OK Cancel Apply Hel	2	
	r	а	26 U U		8	12

Ustawienie pozostałych krawędzi jako ścian (Wall):

quation		
Lagadon		
u = 0		
Boundaries Groups	Coefficients Color/St	
Boundary selection	Boundary conditions	
2	Boundary type:	~
4	Boundary condition:	lip 🗸
5		
7		
8 🗸		
Group:		
Select by group		
Interior boundaries		
Group: Select by group		

Wyniki analizy:

					Sur	face: Velocity	field [m/s] Arro	w: Velocity field									>
													~	*			
~	*-	4	~	4	←	~	\leftarrow		←	←	~	←-	¢	4			
-	~	~	~	~	Ł				~	\leftarrow	←	\leftarrow	Ł	\leftarrow			
-	\leftarrow	<	4							\leftarrow	\leftarrow	\leftarrow	←	~			
-	4	4	K							←-	\leftarrow	\leftarrow	\leftarrow	\leftarrow			
			E.	K	K					\leftarrow	\leftarrow	<i>←</i>	\leftarrow	~-			
			Ł	K	K	Ł	\leftarrow	\leftarrow		\leftarrow	←-	\leftarrow	\leftarrow	\leftarrow			
			÷	K					K	←	\leftarrow	\leftarrow	\leftarrow	\leftarrow			
			←	←					$\mathcal{D}_{\mathcal{C}}$	\leftarrow	←	\leftarrow	\leftarrow	\leftarrow			
		\leftarrow	←	~	←	←	←	4	~	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow			
	\leftarrow	←	\langle	$\langle \langle \cdot \rangle$	\leftarrow	\leftarrow	\leftarrow			\leftarrow	←	\leftarrow	←	\leftarrow			
_	\leftarrow	<	\leftarrow	~~						<u> </u>	\leftarrow	~	←	~			
_	←	~	~	<	~			4	4	←	←	\leftarrow	<	←			
←	~	←	~	←	←	<u> </u>	←	<u> </u>	←	←	←	~	\leftarrow	~			
						-							-	ŧ			
	-1500	-1000	-500	0	50	00	1000	1500	2000	2500	3000	350	0 4	000	4500	5000	~

c) <u>Wnioski.</u>

Powietrz opływając skrzydło, przemieszcza się po jego górnej oraz dolnej powierzchni. Górna linia prądu pokonuje znacznie dłuższą drogę, niż strumień pod skrzydłem. Nad skrzydłem tworzy się strefa niskiego ciśnienia, a pod – strefa ciśnienia wysokiego. Różnica ciśnień powoduje powstanie siły nośnej, utrzymującej skrzydło w powietrzu. Zamykając i otwierając klapy, sterujemy przepływem powietrza w taki sposób, że samolot opada, bądź wznosi się. Czwarty model skrzydła nie może być stosowany w samolotach, gdyż w tym przypadku strefa niskiego ciśnienia tworzy się pod skrzydłem, a siła działająca na skrzydło skierowana jest ku dołowi. Samolot nie mógłby w takim przypadku wznieść się w powietrze. Takie rozwiązanie znajduje jednak zastosowanie w spojlerach samochodów sportowych, mających na celu dociśnięcie tylnych kół do ziemi, dzięki czemu samochód nie traci przyczepności. Zapobiega to wpadaniu w poślizg przy dużej prędkości.