

MODELOWANIE I SYMULACJA ZAGADNIEŃ BIOMEDYCZNYCH

PROJEKT

Modelowanie i analiza właściwości wytrzymałościowych kości udowej człowieka

Anna Barnaś

Anna Sznycer

Anna Zając

Poznań 2015

Spis treści:

1.	Cel projektu	3
2.	Budowa układu szkieletowego	
3.	Budowa kości	4
4.	Kość udowa – bodowa anatomiczna	6
5.	Właściwości materiałowe	7
6.	Właściwości mechaniczne kości	
7.	Analiza naprężeń i odkształceń występujących w ciele stałym	
8.	Charakterystyczne równania ruchu ciała stałego	12
9.	Metoda elementów skończonych	15
10.	Analiza wytrzymałościowa	16
	10.1 Analiza wytrzymałościowa kości z materiału "bone"	16
	10.2 Analiza wytrzymałościowa kości stalowej	
11.	Wnioski	42
12.	Literatura	45

1.Cel projektu

Celem niniejszej pracy jest wykonanie analizy wytrzymałościowej kości udowej człowieka za pomocą programu COMSOL Multiphysics. Element został poddany obciążeniu o wartości zbliżonej do maksymalnej wytrzymałości na rozciąganie kości. Początkowo zasymulowano rozkład naprężeń dla jednego punktu utwierdzenia, a następnie badano ugięcie kości w przypadku utwierdzenia obustronnego.

2. Budowa układu szkieletowego człowieka

Układ kostny spełnia bardzo ważną rolę w ciele człowieka: stanowi przyczep dla mięśni, zapewnia utrzymanie pionowej postawy ciała i wykonywanie ruchów. Ponadto ochrania narządy wewnętrzne przed urazami.

Szkielet dorosłego człowieka składa się z około 206 kości. Ze względu na kształt dzielimy je na cztery kategorie: długie, krótkie, płaskie oraz różnokształtne. Kości długie posiadają nasadę górną, dolną oraz trzon wewnątrz którego znajduje się wypełniona szpikiem kostnym jama szpikowa. Z mechanicznego punktu widzenia kości te tworzą system dźwigni, poruszany przez mięśnie. Są one niezbędnym elementem w aparacie ruchu człowieka. Przykładami kości długich są: kość ramienna, udowa, piszczelowa, łokciowa. Kości krótkie charakteryzują się tym, że wszystkie wymiary mają podobną wartość. Do tej grupy zalicza się m.in. trzeszczki, kości nadgarstka i stępu. Kości płaskie np. mostek, są wytrzymałe na urazy i posiadają płaski trzon. Długość i szerokość znacznie przekracza ich grubość. Kości różnokształtne (żuchwa, rzepka) posiadają nieregularny kształt [1].

Rys.1 Szkielet człowieka [2]

3. Budowa kości

Strukturę kości można rozpatrywać w skali mikroskopowej oraz makroskopowej. Rozważając pierwszą kategorię należy wymienić następujące tkanki: kostną, chrzęstną, tłuszczową oraz krwiotwórczą. Tkankę kostną tworzą: komórki kostne – osteocyty (stanowią 5 % masy tkanki), osteoblasty (komórki kościotwórcze) i osteoklasty (komórki kościogubne), a także substancja międzykomórkowa (osseina), która zawiera włókna kolagenowe nadające sprężystość (stanowi 25% masy tkanki).

W skali makroskopowej kości zbudowane są z dwóch odmiennych warstw: istoty zbitej oraz istoty gąbczastej. Istota zbita zawiera dużo fosforanu wapnia, dzięki czemu kość jest sztywna i odporna na złamania. Wypełnia ramiona długich dźwigni w szkielecie - buduje trzony kości długich. Ponadto współtworzy w czaszce kości osłaniające mózgowie. Stanowi zewnętrzną warstwę kości. Jej porowatość wynosi mniej niż 6%.

Istota gąbczasta wypełnia wnętrze kości. Jej porowatość wynosi około 80%, co przekłada się na znacznie mniejszą gęstość w porównaniu z istotą zbitą. W tym rodzaju istoty blaszki kostne są luźno ułożone i tworzą beleczki kostne pomiędzy którymi znajduje się szpik kostny. Ażurowa konstrukcja istoty gąbczastej zapewnia amortyzację, dlatego to głównie ona stanowi budulec nasad kości długich.

Kości (poza powierzchniami stawowymi), otoczone są mocną, łącznotkankową błoną zwaną okostną. Zawiera ona naczynia krwionośnie i nerwy. Funkcją tej błony jest zaopatrywanie kości w tlen i składniki odżywcze, udział w procesach regeneracyjnych [3].

Rys.2 Przekrój kości długiej wraz z elementami strukturalnymi [4]

Większość kości przechodzi przez 3 stadia rozwojowe:

- Tkanka kościotwórcza powstająca ze środkowego listka zarodkowego (mezodermy).
 Tkanka ta tworzy pierwsze stadium szkieletu szkielet błoniasty.
- Przekształcenie szkieletu w bardziej sztywny szkielet chrząstkowy, który jest w stanie dotrzymać tempa szybko rosnącemu płodowi.
- Proces kostnienia, który odbywa się dzięki odkładaniu się soli mineralnych w przebudowanych chrząstkach. Prawie cała chrząstka w okresie kostnienia zostaje w skutek działania osteoklastów rozbudowana, rozpuszczona, a następnie na gruzach jej zostaje działaniem osteoblastów zbudowana kość.

4. Kość udowa- opis anatomiczny

Kość udowa (*femur*) jest najdłuższą i najmocniejszą kością w całym szkielecie człowieka. Składa się z trzonu (corpus) oraz dwóch końców. Jej górny koniec zaczyna się głową kości udowej (caputossisfemoris) osadzoną na szyjce kości udowej (collumossisfemoris). Na głowie występuje dołek głowy, stanowiący przyczep dla więzadła głowy kości udowej. Bocznie od szyjki wystaje ku górze krętarz większy (trochanter major) natomiast poniżej niego, w kierunku przyśrodkowym, wyczuwalna jest niewielka wyniosłość – krętarz mniejszy kości udowej (trochanter minor).

Koniec dalszy kości udowej, wyraźnie zgrubiały, zbudowany jest przez dwa kłykcie: przyśrodkowy i boczny (condylusmedialis et condyluslateralis), służące do połączenia stawowego z kością piszczelową. Kłykieć przyśrodkowy jest większy od bocznego. Są one przedzielone głębokim dołem międzykłykciowym. Oba kłykcie na przedniej stronie kości współtworzą wklęsłą powierzchnię rzepkową (faciespatellaris), poprzez którą, łączą się z rzepką. Boczne powierzchnie kłykci ograniczone są przez duże guzki zwane nadkłykciami: przyśrodkowym i bocznym (epicondylusmedialis et epicondyluslateralis).

Trzon kości udowej (corpusossisfemoris) ma trzy powierzchnie: przednią i dwie boczne. W dolnej części trzonu ograniczają one gładkie, trójkątne pole zwane powierzchnią podkolanową (faciespoplitea). Powierzchnia podkolanowa jest dnem dołu podkolanowego przez który przebiegają naczynia podkolanowe oraz nerwy strzałkowy wspólny i piszczelowy [5].

Rys.3 Budowa kości udowej [6]

5. Właściwości materiałowe

W przypadku każdego materiału w celu poznania jego właściwości należy posiłkować się wielkościami wielu współczynników. Znajomość podstawowych wielkości i miar jest niezbędna w pracy inżyniera. Do najważniejszych wielkości można tu zaliczyć Moduł Kirchoffa, Moduł Younga, współczynnik Poisson'a, wytrzymałość na rozciąganie i granicę plastyczności, które szerzej opisano poniżej.

5. 1. Moduł Kirchhoffa - inaczej określany jako moduł sprężystości poprzecznej, ten współczynnik wyrażony jest poniższym wzorem, który uwzględnia stosunek naprężenia ścinającego τ do odkształcenia postaciowego γ [7].

$$G = \frac{\tau}{\gamma}$$

5. 2. Moduł Younga – inaczej określany jako współczynnik sprężystości podłużnej, stosuje się go to opisu sprężystości materiału. Wzór opisujący moduł Younga uwzględnia

stosunek odkształcenia liniowego ε do naprężenia występującego w materiale w przedziale odkształceń sprężystych σ .

$$E = \frac{\varepsilon}{\sigma}$$

5. 3. Współczynnik Poisson'a – określany jest w przypadku osiowego stanu naprężeń i wyraża go stosunek odkształcenia poprzecznego ε_{pop} do odkształcenia podłużnego ε występującego w danym materiale.

$$v = \frac{\varepsilon_{pop}}{\varepsilon}$$

5. 4. Wytrzymałość- zajmuje się opisem zachowywania się ciała poddanego siłom zewnętrznym oraz odpowiadających im naprężeń oraz wywołanych przez nie odkształceń. Określa także wartości konkretnych naprężeń (rozciągających, ścinających, zginających i ścinających) przy których występuje zniszczenie lub pęknięcie badanego elementu.

5. 5. Granica plastyczności – jest to konkretna wartość naprężenia, przy którym rozpoczyna się proces powstawania nieodwracalnych, mikroskopijnych odkształceń plastycznych we wszystkich ziarnach lub występuje płyniecie materiału.

6. Właściwości mechaniczne kości

Kości należą do materiałów anizotropowych, co oznacza, że posiadają różne właściwości w zależności od analizowanego kierunku. Moduł Younga w kierunku podłużnym jest 2 razy większy niż poprzecznym a wytrzymałość na rozciąganie jest 2.5 razy większa. Badania tego materiału wykonuje się na świeżo uzyskanych, trupich kościach udowych, w temperaturze 36°C i środowisku wilgotnym (w celu symulacji warunków zbliżonych do panujących w ciele człowieka).

Rys.4 Anizotropia kości na przykładzie charakterystyki siła-wydłużenie [8]

Wytrzymałość mechaniczna kości jest uzależniona od wielu czynników. Jedną z dominujących składowych jest funkcja jaką kość pełni w organizmie. Ma ona znaczący wpływ na jej masę, strukturę jak również objętościową dystrybucję poszczególnych frakcji. Na wytrzymałość tkanki kostnej wpływa też wiek osobnika, płeć oraz stan zdrowia (m.in. predyspozycje do występowania osteoporozy oraz patogenezy).

W przypadku badań in vitro na jakość próbki duży wpływ ma miejsce jej pobrania, orientacja przestrzenna oraz przede wszystkim sposób przechowywania preparatu. Właściwości próbek pobranych zaraz przed badaniem mogą różnić się nawet o 20% w stosunku do preparatów suchych.

Gęstość kości wpływa na wartość modułu sprężystości wzdłużnej (Younga E) i wytrzymałości na ściskanie.

Cecha	Wartość
moduł Kirchoffa, G (GPa)	3,51
moduł Young'a, E (GPa)	17,4
współczynnik Poisson'a	0,39
wytrzymałość na: (MPa)	
rozciąganie – wzdłużne	133
rozciąganie – poprzeczne	51
ściskanie – wzdłużne	195
ściskanie – poprzeczne	133
ścinanie	69
zginanie	208,6
granica plastyczności (MPa)	
rozciąganie – wzdłużne	115
ściskanie – wzdłużne	182
ściskanie – poprzeczne	121
ścinanie	54

Tab.1 Wybrane właściwości mechaniczne ludzkiej kości dla tkanki korowej [9]

7. Analiza naprężeń i odkształceń występujących w ciele stałym

Jednym z najważniejszych praw stosowanych w mechanice jest **prawo Hooke'a.** Stosowane jest ono w przypadku jednoosiowego stanu naprężeń. Opisuje ono zależność występującą pomiędzy odkształceniami ciała w odniesieniu do oddziałującego na nie naprężeń. Prawo Hooke'a wyraża się wzorem

$$\sigma = E\varepsilon$$

gdzie:

σ – naprężenia normalne w poprzecznym przekroju pręta [MPa],

E - współczynnik sprężystości wzdłużnej - moduł Younga [Pa],

ε – odkształcenia względne.

Jak wynika z zależności (liniowej) odkształcenie ciała jest wprost proporcjonalne do siły, która na nie działa.

W tym miejscu należy wyjaśnić, iż każde ciało stałe , pod wpływem działania na nie obciążeń mechanicznych odkształca się. Jeśli z takiego ciała "wyizoluje się" dowolnie małe elementy, to można założyć iż dany element ma kształt prostopadłościenny o długościach krawędzi dx, dy oraz dz. W czasie odkształcania krawędzie ulegają wydłużeniu lub skróceniu o wielkości nazywane składowymi stanu odkształcenia:

$$(1+\varepsilon_x)dx$$
, $(1+\varepsilon_y)dy$, $(1+\varepsilon_z)dz$,

Tensor określający odkształcenia ε ma postać macierzy:

$$\varepsilon = \begin{cases} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{cases} = \begin{cases} \frac{\gamma_{yx}}{2} & \frac{\gamma_{xz}}{2} \\ \frac{\gamma_{yz}}{2} & \frac{\gamma_{yz}}{2} \\ \frac{\gamma_{zz}}{2} & \frac{\gamma_{zy}}{2} \\ \frac{\gamma_{zz}}{2} & \frac{\gamma_{zy}}{2} \\ \frac{\varepsilon_{z}}{\gamma_{xy}} \\ \gamma_{yz} \\ \gamma_{zx} \end{cases}$$

gdzie:

 $\varepsilon_x, \varepsilon_y, \varepsilon_z$ - zmiany długości danych krawędzi

 $\gamma_{xy},\gamma_{yz},\gamma_{zx}$ - odkształcenie kątowe (wyrażane jest w mierze łukowej)

W przypadku zastosowania prostokątnego układu współrzędnych x, y, z można uzyskać składowe naprężeń normalnych $\sigma_x, \sigma_y, \sigma_z$ oraz składowe naprężeń stycznych $\tau_{xy}, \tau_{yz}, \tau_{zx}$.

$$\sigma = \begin{matrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{matrix} = \begin{matrix} \tau_{yx} \\ \tau_{zz} \\ \tau_{zz} \\ 2 \end{matrix} \quad \begin{matrix} \tau_{zy} \\ \tau_{zz} \\ \tau_{zz} \\ 2 \end{matrix} \quad \begin{matrix} \tau_{zy} \\ \tau_{zz} \\ \tau_{zz} \\ \tau_{zz} \\ \tau_{zy} \\ \tau_$$

$$\sigma_{x}$$

$$\sigma_{y}$$

$$\sigma = \frac{\sigma_{z}}{\tau_{xy}}$$

$$\tau_{yz}$$

$$\tau_{zx}$$

W powyższym rozdziale wykorzystano źródła [10], [11], [12].

8. Charakterystyczne równania ruchu dla ciała stałego

Podstawowe równanie ruchu nosi nazwę **równania Naviera**. Wywodzi się ono z zależności liniowej występującej pomiędzy naprężeniami i odkształceniami (prawo Hooke'a). Równanie Naviera ma postać:

$$\rho_s \frac{\partial^2 u}{\partial t^2} - \nabla \cdot \boldsymbol{\sigma} = \boldsymbol{F}$$

gdzie:

 ho_s-g ęstość ciała stałego

 σ – tensor naprężeń

u – wektor przemieszczeń

F – wektor sił masowych

W przypadku stanu ustalonego równanie Naviera wygląda następująco:

$$-\nabla \cdot \sigma = F$$

Należy pamiętać, że zawsze zależności między odkształceniami i naprężeniami, które są oparte na prawie Hooke'a można stosować dla trójosiowego stanu naprężeń. Biorąc pod uwagę współczynnik Poisson'a oraz zależności pomiędzy naprężeniami ścinającymi oraz kątami odkształcenia. W wyniku oddziaływania na ciało z materiału o właściwościach izotropowych – liniowo sprężystych trzema składowymi naprężeń powstają trzy składowe odkształceń wzdłużnych. Odkształcenia główne powstają w wyniku naprężeń działających w kierunku tych odkształceń, a także napręzeń stycznych – prostopadłych do tego kierunku.

Poniższy układ równań prezentuje prawo Hooke'a dla trójwymiarowego układu naprężeń – w przypadku materiału izotropowego:

$$\varepsilon_x = \frac{1}{E} [\sigma_x - v(\sigma_y + \sigma_z)]$$

$$\varepsilon_y = \frac{1}{E} [\sigma_y - v(\sigma_z + \sigma_x)]$$

$$\varepsilon_z = \frac{1}{E} [\sigma_z - v(\sigma_x + \sigma_y)]$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$

$$\gamma_{xz} = \frac{\tau_{xz}}{G}$$

$$\gamma_{yz} = \frac{\tau_{yz}}{G}$$

Gdy uwzględni się układ naprężeń trójosiowy, równanie Naviera można przedstawić w następujący sposób:

$$\rho_s \frac{\partial^2 u_1}{\partial t^2} - \frac{\partial \sigma_x}{\partial x} - \frac{\partial \tau_{xy}}{\partial y} - \frac{\partial \tau_{xz}}{\partial z} = F_x$$

$$\rho_s \frac{\partial^2 u_2}{\partial t^2} - \frac{\tau_{xy}}{\partial x} - \frac{\partial \sigma_y}{\partial y} - \frac{\partial \tau_{yz}}{\partial z} = F_x$$

$$\rho_s \frac{\partial^2 u_a}{\partial t^2} - \frac{\partial \tau_{xz}}{\partial x} - \frac{\partial \tau_{yz}}{\partial y} - \frac{\partial \sigma_{xz}}{\partial z} = F_x$$

gdzie:

u_1, u_2, u_3 – przemieszczenia w kierunkach x, y, z

Występowanie stałych mechanicznych uzależnione jest od rodzaju materiału. Materiały izotropowe charakteryzują się dwiema odrębnymi stałymi materiałowymi: $\mu i \lambda$, nazywane są one stałymi Lamego. Wzoru przedstawiające wspomniane stała wyglądają następująco:

$$\lambda = \frac{Ev}{(1+v)(1-v)'}$$

$$\mu = \frac{E}{2(1+\nu)'}$$

gdzie:

E – moduł Younga

v- współczynnik Poissona

Co najważniejsze w przypadku gdy uwzględnimy stałe Lamego w równaniu dla materiału izotropowego opartym na prawie Hooke's otrzymamy wzór:

$$\boldsymbol{\sigma} = \lambda (\nabla \cdot \boldsymbol{u}) \boldsymbol{I} + 2\mu \boldsymbol{\varepsilon}$$

gdzie:

I – macież tożsamości

 σ – delta Kroneckera

 $\varepsilon-tensor przemieszczenia$

W związku z poprzednimi rozważaniami dla materiału izotropowego postać równania Naviera przedstawiającego całkowitą energię potencjalną odkształcenia do przemieszczenia wygląda następująco:

$$\rho_s \frac{\partial^2 u}{\partial t^2} = \mu \nabla^2 \mathbf{u} + (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) + \mathbf{F}$$

Przypadku stanu ustalonego to równanie ma prostszą postać:

$$\mu \nabla^2 u + (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) = -\mathbf{F}$$

Zależność między tensorem odkształcenia a naprężenia czyli równanie konstytutywne wygląda następująco:

$$\sigma = D\varepsilon$$

gdzie:

$$\varepsilon = \frac{1}{2} (\nabla u + \nabla u)^T) - tensor \ odkształcenia$$

Wspomniana macierz D, to macierz sprężystości, która wyraża związek pomiędzy odkształceniem a naprężeniem:

$$D = \frac{E}{(1+v)(1-2v)} \begin{bmatrix} 1-v & v & v & 0 & 0 & 0 & 0 \\ c & 1-v & v & 0 & 0 & 0 & 0 \\ v & v & 1-v & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2v}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2v}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2v}{2} \end{bmatrix}$$

Natomiast związek między naprężeniami a odkształceniem, nazywany jest macierzą elastyczności:

$$D^{-1} = \frac{1}{E} \begin{bmatrix} 1-v & -v & -v & 0 & 0 & 0 & 0 \\ -v & 1-v & -v & 0 & 0 & 0 & 0 \\ -v & -v & 1-v & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+v) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+v) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+v) \end{bmatrix}$$

Do określania stałych materiałowych wykorzystywane są macierze D oraz D^{-1} , dla konkretnych typów materiałów można wyróżnić:

- materiał izotropowy 2 stałe materiałowe,
- materiał ortotropowy 9 stałych materiałowych,
- materiał anizotropowy 21 stałych materiałowych.

W powyższym rozdziale wykorzystano źródła [10], [11], [12].

9. Metoda elementów skończonych

Metoda Elementów skończonych (MES, ang. fonite – element method), jest powszechnie stosowaną metodą zaliczaną jednak do zaawansowanych, która służy do rozwiązywania układów równań różniczkowych. Jej podstawą jest dyskretyzacja, czyli podział dziedziny na skończone elementy, w przypadku których rozwiązanie jest przybliżone przez dane funkcje. Faktyczne obliczenia przeprowadza się tylko dla węzłów podziału [13].

Ogólnie Metoda Elementów skończonych jest metodą aproksymacji, inaczej mówiąc rozwiązań przybliżonych równań różniczkowych cząstkowych. Pod uwagę bierze się równania, które są matematycznym modelem konkretnego procesu lub stanu układu fizycznego. Dany proces lub stan określany jest przy użyciu parametrów będących funkcjami położenia w czasie i przestrzeni.

Zastosowanie MES jest bardzo szerokie. W mechanice komputerowej pozwala ona na badanie wytrzymałości konstrukcji, symulacje odkształceń, naprężeń, przemieszczeń, a także pozwala na analizę przepływu cieczy czy ciepła. Co więcej umożliwia badanie statyki, kinematyki i dynamiki maszyn, a także oddziaływań elektrostatycznych, magnetostatycznych oraz elektromagnetycznych. Można więc stwierdzić, iż modelowanie i symulacja zagadnień biomedycznych opiera się na metodzie elementów skończonych. W tym miejscu należy zaznaczyć, dzięki MES istnieje możliwość symulowania komputerowego skomplikowanych zagadnień fizycznych, które działają na złożone geometrie. Ta metoda pozwala pominąć etap budowania prototypów, co pozwala zaoszczędzić środki finansowe oraz usprawnia cały proces projektowania.

Stosując Metodę elementów skończonych należy zdawać sobie sprawę z jej wad. Końcowy wynik metody uzależniony jest od mocy obliczeniowej komputera. Metoda ta może wprowadzić jednak szereg błędów do końcowego rozwiązania np. błąd wartości współczynników, błąd odwzorowania obszaru czy błąd zaokrągleń [14].

10. Analiza wytrzymałościowa

10.1 Analiza wytrzymałościowa kości z materiału "bone"

W ramach realizowanego projektu wykonano analizę wytrzymałościową kości udowej człowieka za pomocą programu COMSOL Multiphysics. Założono, iż kość została wykonana z materiału "bone" najbardziej zbliżonego właściwościami do materiału prawdziwej kości. Element został poddany działaniu sił o wartości10 000 N/m² w kierunku osi x oraz -2000 N/m² w kierunku osi z. Początkowo zasymulowano rozkład naprężeń dla jednego punktu utwierdzenia, a następnie badano ugięcie kości w przypadku utwierdzenia obustronnego. Poniżej zostały przedstawione kolejne etapy symulacji.

• Wygenerowanie siatki czworościanów

W celu dokonania analizy na początku należy podzielić obszar na mniejsze elementy. Krok ten wykonany jest przy użyciu funkcji Mesh. W rezultacie otrzymujemy model zbudowany z czworościanów.

• Utwierdzenie kości

Kolejny etap to utwierdzenie kości. Na początku kość została utwierdzona tylko w jednym miejscu a mianowicie w panewce. W tym celu należało wybrać kolejno w programie:

- ➔ Solid mechanics
- ➔ FixedConstraint
- → Kliknięcie na konkretne obszary wygenerowane na powierzchni którą chcemy utwierdzić.

2 🗅 📂 🔲 🥄 G 🙃 🛱 🛍 🖄 🔘 🖉 📗					Untitled.mph - COM	SOL Multiphysics				
File Model Definitions Geometry Materials	Physics	Mesh Study Results								?
Component Add 1 · Component · Model · Definitions · Definitions	etink + 1	Add Waterial Solid Add Materials Solid Add Methanias Physics Materials Materials Materials Methanics Physics Materials Materials Physics Materials Methanics Methani	Mesh 1 •	Comp	pute Study Add 1 • Study Study Study	tress Add Plot N alid) • Group • Lit Results	Model More braries Windows • Windows	CeReset Desktop		
Model Builder ▼ ← → ☞ ▼ III III ④ ▼	Sett	ings Mechanics	Ŧ	- II. (Graphics ෧,෧,⊕ ⊞ Ⴣ		-	- 14 12 14 14 15 15	* • • • • • • • • •	- 1
	Label: Name:	Solid Mechanics solid					0.5	0.2	5 0.3	0
Component1 (comp1) E Definitions	De	omain Selection							B.	
 Geometry 1 Import 1 (imp.l) 	Selection	on: All domains	-	•			0.6#			
Materials	Active		- E	-					\checkmark	
Solid Mechani Exit (def) Solid Mechani Elinear Elas Solid Mechani Elinear Elas Solid Mechani Enerel Material Models	,		÷				1.			
Initial Valu Volume Forces	•	Jation					0.7	THE	1	
Boundary I Densis Constraints	÷	n form:		_			11			
A 100 Study 1		controlled		-			- 11	HH I I		
Step 1: Station		uation assuming:					11			
A Solver Configure Coundary Load		1, Stationary		-			HY	$m \mid r$		
Compi		= Fv					0.8			
A Constant of the second secon		actural Transient Behavior					II A	$1 \rightarrow$		
Ady Connections	•	le inertial terms		-			11 A			
Full Pairs A Results Mass, Spring, and Damper	;	erence Point for Moment Computation				ាន	HAL			
The Data Sets More Constraints	•		x			0.5	1 2 H	1		
Tables Edges	•		y 7	m	لام			17		
Surface 1 Points	•		-		z		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\times 1		
A 🚰 Stress (solid) 1 🚔 Bolt Pre-Tension		ical Wave Speed for Perfectly Matched Layers			ж					
Export Group by Space Dimension		tolid.cp	m	vs I	Messages Progress	Log				$ +$ \times
Reports	Del	pendent Variables			6					
Ø Disable	F3			5	Solution time (Study 1): 12 Avoided 28 inverted elemer	s. nts by using linear geor	metry shape order.			*
👘 Rename	F2			1	Number of degrees of freed Solution time (Study 1): 11	forn solved for: 79269.	-			
Settings				i li	Avoided 28 inverted element Number of degrees of freed	nts by using linear geo form solved for: 79269.	metry shape order.			
Properties				5	Solution time (Study 1): 11	5.				*
I Help	F1							1.18 GB 1.27	5 8	
🚱 🙆 💾 Dokument1 - Mic 📙	Dinbit	led.mph - C 🛹 Dysk lokalny (D:)							PL 🚎 🔺 🔯 🔀 🕪 💡	12:45 2015-06-02

Rys. 6 Printscreen z programu, wybór opcji zaznaczania powierzchni utwierdzenia

Rys. 7 Kolorem szarym zaznaczona powierzchnia utwierdzenia

• Przyłożenie siły

W kolejnym etapie pracy należało wybrać miejsce i kierunek przyłożenia siły. W tym celu należało wybrać kolejno w programie:

- ➔ Solid mechanics
- ➔ BoundaryLoad
- → Kliknąć na obszary wygenerowane na powierzchni w miejscu planowanego przyłożenia siły

- <u> </u>	8	14 fi 14 🚺 🖪 🐧								Untitled	l.mph - CO	MSOL M	ultiphysics						0 X
File Model Defin	nitio	ns Geometry Materials	Physic	s Me	lesh Study Results											-			7
Component Add I - Component - Model	•	Pi Parameters a= Variables • f(x) Functions • Definitions Geometry	ink -	Add Materi	Blank Material Browse Materials di mal Materials	olid Add hanics • Physics Physics	Build M Mesh	Aesh 1 •	Com	npute Study 1 • Study	Add Study	Stress (solid) • Res	Add Plot Group •	Model More Libraries Windows Windows	C⊙ Rese □ Desk	t Desktop top Layout + øyout			
	e1 •	×.	Se	ettings id Mech	S			v	*	Graphics	⊕ ⊕	↓ • 1	xy jyz jzx				জ ৷ ৬ 🖬 🗟 হি ৩		• • • 0 🖨
	comp (imp ion (at1) (det	2) 52) 7(m) 1. Initial Values Material Madels Volume Forces	Sel Ac	el: Soli Domain ection: 1 ive	III Michael III Michael III Michael III Michael All domains			• • •						0.6			.25 0.3		6
Fixed (Bounc Mesh 1		Mass, Spring, and Damper Domain Constraints	*	ation for tudy conf	rm: ntrolled			-	-					s.//		1-	+		
Step 1: Ste Solution Solution Solution Compared Compared Step 1: Ste Solution Solution Compared Step 2: Ste Solution Compared Step 2: Ste Solution Solution Step 2: Step 2: Ste Solution Solution Step 2: Step 2: S	Free Boundary Load Fixed Constraint Prescribed Displacement Roller Conservation	Free Boundary Load Fixed Constraint Prescribed Displacement Roller Connections		w equation tudy 1, St $\sigma = F_V$ Structur	tion assuming: itationary iv ural Transient Behavior			•						0.8		4			
A Results B Results B Derived V Tables C Tables	E .	Pairs Mass, Spring, and Damper More Constraints Edges Points De 10 De Section	*	Referen	ince Point for Moment Compu I Wave Speed for Perfectly Ma	ation tched Layers		x y r z	m	× 2			0.		#	\downarrow			
Export		Group by Space Dimension		solid.	d.cp			m/	/s	Messages	Progress	Log							* # ×
Reports	「「「「」」の「「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」	Delete I Disable F Rename F Settings Properties	2 2	Depend	ident Variables					Solution time Avoided 28 im Number of de Solution time Avoided 28 im Number of de Solution time	(Study 1): 1 verted elem grees of fre (Study 1): 1 verted elem grees of fre (Study 1): 1	2 s. nents by u edom sol 1 s. nents by u edom sol 1 s.	ising linear go Ived fon 7926 Ising linear go Ived for: 7926	cometry shape orde 9. cometry shape orde 9.	er. er.				*
	2	Help F	1													1.19 GB 1.2	28 GB		
📀 💿 🖭	D	okument1 - Mic 😕 🚶		ntitled.m	nph - C 🛹 Dysk lokaln	r (D:)											PL 🚎 🔺	😼 🍓 🐠 20	12:47 15-06-02

Rys.8 Printscreen z programu, wybór opcji zaznaczania powierzchni przyłożenia siły

Rys.9 Model kości z zaznaczoną kolorem fioletowym powierzchnią przyłożenia siły

W kolejnym etapie należało wybrać wartość oraz kierunek zadanej siły. Kierunek został wybrany na podstawie układu współrzędnych znajdującego się w programie. Wartości poszczególnych sił wynoszą: w kierunku osi x 10000 N/m², a w kierunku osi z 2000 N/m² (wartość podana z "-" gdyż siła skierowana w przeciwnym kierunku)

•	Force						
Load	type:						
Lo	ad defined as force per unit area		•				
F۵	FA User defined 🔹						
	10000	х					
	0	у	N/m ²				
	-2000	z					

• Wybór materiału kości

W kolejnym etapie należy wybrać materiał z jakiego jest wykonana nasza kość. W tym celu należy wskazać odpowiedni materiał i wpisać jego parametry, które posłużą do wykonania symulacji takie jak:

- gęstość
- moduł Younga
- współczynnik Poissona

W projekcie porównano kość wykonaną z materiału o właściwościach kości ludzkiej oraz kość wykonaną ze stali. W tym etapie wybrano materiał "bone" czyli materiał kostny.

Rys. 11 Printscreen programu przedstawiający parametry wybranego materiału "bone"

• Symulacja

Po wybraniu i ustawieniu wszystkich parametrów wykonana została symulacja.

Rys. 12 Naprężenia w kości po wykonaniu symulacji.

Rys. 13 Naprężenia w kości po wykonaniu symulacji.

Rys. 14 Naprężenia w kości po wykonaniu symulacji.

Rys. 15 Printscreen z programu, naprężenia w kości po wykonaniu symulacji.

Po przeanalizowaniu wyniku symulacji można stwierdzić iż przy zadanych wartościach i kierunkach sił największe naprężenia występują w miejscu połączenia szyjki kości udowej z trzonem oraz w samym trzonie po jego wewnętrznej części. Są to miejsca najbardziej narażone na urazy w przypadku obciążenia kości dużymi siłami.

• Przemieszczenie

Pod wpływem działających sił kość ulega przemieszczeniu. Można sprawdzić wartość tego przesunięcia pod wpływem działających sił w programie. Przy zadanych wartościach sił przedstawionych powyżej wartość przemieszczenia jest równa 2 cm. Przemieszczenie zostało zaznaczone na zdjęciach poniżej za pomocą czarnej siatki.

Rys. 16Printscreen z programu, przemieszczenie pod wpływem działających sił.

Rys. 16 Czarną siatką zaznaczone przemieszczenie

Rys. 17 Czarną siatką zaznaczone przemieszczenie

• Zagęszczenie siatki elementów skończonych

W kolejnym etapie dokonano zagęszczenia siatki elementów skończonych w celu sprawdzenia czy dokładność wyników naprężeń i przemieszczeń zależą od gęstości zagęszczenia siatki. W tym celu należało dokonać w programie następujących operacji:

- → Mesh1
- ➔ Size
- \rightarrow Predefined -> Fine

Model Builder	✓ ■ Settings
Model Builder ← → ☞ • Ⅲ Ⅲ Ⅲ □ • ■ ③ Untitled.mph (root) ■ ③ Global ◎ Definitions ◎ Materials ■ Component 1 (comp1) ■ Definitions ■ M Geometry 1 □ Import 1 (imp1) ■ Form Union (fin) ■ ③ Bone (mat1) ■ ③ Basic (def) ■ ③ Solid Mechanics (solid) ■ Linear Elastic Material 1 ■ Free 1 ■ Initial Values 1 ■ Fixed Constraint 1 ■ Fixed Constraint 1 ■ Fixed Constraint 1 ■ Soludary Load 1 ■ Mesh 1 ■ Study 1 ■ Study 1 ■ Study 1 ■ Study 1 ■ Solver Configurations ■ Solver Configurations ■ Solver Configurations 1 ■ W Dependent Variables 1 ■ Fixed Constraint 2 ■ Stationary Solver 1	 Settings Size Build Selected Build All Label: Size Element Size Calibrate for: General physics Predefined Fine Custom Element Size Parameters
 uvw Dependent Variables 1 Existionary Solver 1 Direct Advanced Fully Coupled 1 Information 1 	

Rys. 18 Printscreen z programu, zagęszczenie siatki elementów skończonych

Rys. 19 Model z zagęszczona siatką elementów skończonych

• Symulacja oraz wyniki przemieszczenia po zagęszczeniu siatki elementów skończonych

Dokonano ponownej symulacji naprężeń modelu oraz zbadania przemieszczenia po zagęszczeniu siatki elementów skończonych. Po przeanalizowaniu wyników wartość przemieszczenia jest dokładnie taka sama w dolnej części kości udowej, natomiast wartość naprężeń jest zbliżona (nieco większa). Zwiększenie zagęszczenia siatki powoduje wyższą dokładność w wykonywaniu obliczeń.

Rys. 20 Printscreen z programu, symulacja naprężeń po zagęszczeniu siatki elementów skończonych

Rys. 21 Printscreen z programu, symulacja przemieszczenia po zagęszczeniu siatki elementów skończonych

• Rozrzedzenie siatki elementów skończonych

Następnie dokonana została operacja rozrzedzenia siatki czworościanów w celu sprawdzenia podobieństwa wyników.

Settings		- I
Size Build Select	ed 🟢 Build All	
Label: Size		
Element S	ze	
Calibrate for:		
General physi	cs	•
Predefined Custom	Extra coarse	•
Element S	ze Parameters	

Rys. 22 Printscreen z programu, wybranie odpowiedniej funkcji w celu rozrzedzenia siatki czworościanów

• Symulacja oraz wyniki przemieszczenia po rozrzedzeniu siatki elementów skończonych:

Podobnie jak w przypadku zagęszczenia siatki elementów skończonych dokonano ponownej symulacji naprężeń modelu oraz zbadania przemieszczenia po rozrzedzeniu siatki czworościanów. Po przeanalizowaniu wyników wartość przemieszczenia w dolnej części kości udowej (nieutwierdzonej) jest dokładnie taka sama, natomiast nie zostały wykazane żadne naprężenia w badanym modelu. Zmniejszenie zagęszczenia siatki spowodowało zmniejszenie dokładności obliczeń.

Rys. 23Printscreen z programu, symulacja naprężeń występujących w modelu po rozrzedzeniu siatki czworościanów

Rys. 24 Printscreen z programu, symulacja przemieszczenia po rozrzedzeniu siatki czworościanów

• Wprowadzenie kolejnego utwierdzenia

W kolejnym etapie dodałyśmy kolejne utwierdzenie modelu kości zostawiając przy tym wcześniej istniejące utwierdzenie. Na zdjęciu poniżej widoczne jest miejsce dodania kolejnego utwierdzenia (oba zaznaczone kolorem fioetowym).

Rys. 25 Printscreen z programu, na fioletowo zaznaczone utwierdzenia

• Dodanie nowej siły

W kolejnym etapie dodałyśmy nową siłę. Etapy jej dodawania wyglądały dokładnie tak samo jak poprzednich sił. Jej wartość jest równa 3000N/m² i działa ona w kierunku y.

Rys. 26 Punkt występowania nowej siły (kolor fioletowy)

Settings Boundary Load		~ 1
Label: Boundary Load 1		
Boundary Selection		
Selection: Manual		•
Active 155	100 - 100 -	+ - 🔊
Override and Contribution		
▼ Equation		
Show equation assuming:		
Study 1, Stationary		•
$\sigma \cdot \mathbf{n} = \mathbf{F}_{\mathbf{A}}$		
 Coordinate System Selection 		
Coordinate system:		
Global coordinate system		•
▼ Force		
Load type:		
Load defined as force per unit area		•
FA User defined		•
0 3000 0	x y z	N/m ²

Rys. 27 Printscreen z programu, wartość nowej siły wpisana do programu

• Symulacja oraz przemieszczenie po dodaniu nowej siły

Po wykonaniu symulacji z nową siłą można zauważyć duże przemieszczenie modelu w miejscu przyłożenia siły. Miejsce przyłożenia siły jest narażone na duże odkształcenia i jest to punkt krytyczny naszego modelu.

Rys. 28 Obraz modelu po symulacji

Rys. 29 Obraz przemieszczenia modelu po dodaniu nowej siły

10.2 Analiza wytrzymałościowa kości stalowej

W ramach realizowanego projektu wykonano także analizę wytrzymałościową kości udowej zakładając, iż wykonana jest ona ze stali. W tym celu wykorzystano ten sam co poprzednio model struktury kostnej, dzięki czemu otrzymane wyniki porównano w końcowej części pracy z powyższymi.

Procedura postępowania wyglądała bardzo podobnie jak już wcześniej opisana. Początkowo zaznaczono odpowiednią powierzchnię utwierdzenia (zamocowanie jednostronne). Przyjęto te same obszary co w poprzednim przypadku. Następnie określono warunki brzegowe i wartości siły obciążającej: 10 000 N/m² w kierunku osi x oraz -2000 N/m² w kierunku osi z.

Sett Boun	ings dary Load		-
Label:	Boundary Load 1		
В	oundary Selection		
Selecti	on: Manual		•
Active	228 230 233 235 237		+
⊳ o	verride and Contribution		
▼ E(quation		
Show	equation assuming:		
Stud	ly 1, Stationary		•
σ·n	= FA		
▼ 0	oordinate System Selection		
Coord	inate system:		
Glob	oal coordinate system		•
▼ Fo	prce		
Load t	уре:		
Load	d defined as force per unit area		•
Fa	User defined		•
1	0000 2000	x y z	N/m ²

Rys. 30 Zdefiniowanie obszaru działania siły, wykorzystywane równanie, wartości siły obciążającej.

W kolejnym kroku wybrano materiał – Structuralsteel o następujących właściwościach podstawowych:

- Gęstość 7850 kg/m³
- Moduł Younga E 200 GPa
- Współczynnik Poissona 0,33

**	Property	Name	Value	Unit	Property group
~	Density	rho	7850[kg/	kg/m³	Basic
~	Young's modulus	E	200e9[Pa]	Pa	Young's modu
~	Poisson's ratio	nu	0.33	1	Young's modu
	Relative permeability	mur	1	1	Basic
	Heat capacity at constant pres	Ср	475[J/(kg	J/(kg·K)	Basic
	Thermal conductivity	k	44.5[W/(W/(m·K)	Basic
	Electrical conductivity	sigma	4.032e6[S/m	Basic
	Relative permittivity	epsilonr	1	1	Basic
	Coefficient of thermal expansion	alpha	12.3e-6[1	1/K	Basic
	Murnaghan third-order elastic	1	-3.0e11[N/m ²	Murnaghan
	Murnaghan third-order elastic	m	-6.2e11[N/m²	Murnaghan
	Murnaghan third-order elastic	n	-7.2e11[N/m ²	Murnaghan
	Lamé parameter λ	lambL	1.5e11[Pa]	N/m ²	Lamé paramete
	Lamé parameter µ	muLame	7.5e10[Pa]	N/m ²	Lamé paramete

Rys. 31 Właściwości wybranego materiału

W wyniku zdefiniowania materiału problem wygenerował następujące równania:

▼ Equation	
Show equation assuming:	
Study 1, Stationary	•
$0 = \nabla \cdot s + F_V$	
$s = S_0 + C: (\epsilon - \epsilon_0 - \epsilon_{inel})$	
$\epsilon = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{T})$	
Model Inputs	Z
 Coordinate System Selection 	
Coordinate system:	
Global coordinate system	
 Linear Elastic Material 	
Nearly incompressible material	
Solid model:	
Isotropic	•
Specify:	
Young's modulus and Poisson's ratio	•
$C = C(E, \nu)$	
Young's modulus:	
E From material	•

$C=C(E,\nu)$
Young's modulus:
E From material
Poisson's ratio:
$ u$ From material \bullet
Density:
$ ho$ From material $ extsf{v}$

Rys. 32 Równania matematyczne

Po wykonaniu opisanych czynności wykonano analizę. Po kilku minutach otrzymano następujące wyniki symulacji:

0.3 Surface: von Mises stress (N/m²) 0 ▲ 1.41×10⁵ ×10⁵ 1.4 0. 1.2 ñ 1 0. 0.8 0.6 0.8 0.4 0.2 0.9 ▼ 55.6

• Naprężenia

Rys. 33 Rozkład naprężeń w stalowej kości udowej dla jednostronnego utwierdzenia - ujęcie pierwsze

Rys. 34 Rozkład naprężeń w stalowej kości udowej dla jednostronnego utwierdzenia – ujęcie drugie

Analiza wykazała, iż maksymalne naprężenia występują w powierzchni przedniej kości udowej (ma to związek z punktami przyłożenia siły) i wynoszą $1,41x10^5$ N/m². Kolejnym, najbardziej obciążonym punktem analizowanego kośćca jest dolna część szyjki kości udowej. W tej okolicy występują naprężenia z zakresu $1,41x10^5 - 0,8x10^5$ N/m². Elementy takie jak: głowa kości udowej, krętarz większy, kresa międzykrętarzowa, powierzchnia przyśrodkowa, powierzchnia boczna, nadkłykcie, kłykcie oraz powierzchnia Rzepkowa nie przenoszą żadnych obciążeń.

• Przemieszczenia

Rys. 35 Przemieszczenie stalowej kości udowej dla jednostronnego utwierdzenia

Na rys. 35 przedstawiono przemieszczenie kości udowej ze stali strukturalnej. Wychylenie z położenia początkowego nastąpiło w kierunku płaszczyzny xz. Przesunięcie dotyczyło nasady dolnej rozpatrywanej kości (ma to związek z faktem zamocowania struktury w górnej części) i osiągnęło wartość 2,31x10⁻⁶ m, co w przeliczeniu wynosi 0,00231 mm. Dla nasady górnej oraz pierwszej połowy trzonu nie obserwuje się żadnych translokacji.

W ramach dokonania pełnej analizy rozważono także przypadek zamocowania obustronnego metalowej struktury kostnej. Punkty utwierdzenia były identyczne jak dla przypadku materiału Bone. Zastosowano również taką samą siłę obciążającą, o wartości 3000 N/m² w kierunku osi y.

Settings Boundary Load	- 1
Label: Boundary Load 1	
Boundary Selection	
Selection: Manual	•
Active	* + = - ⑥ ④
Override and Contribution	
 Equation 	
Show equation assuming:	
Study 1, Stationary	•
$\boldsymbol{\sigma} \cdot \mathbf{n} = \mathbf{F}_{\mathbf{A}}$	
 Coordinate System Selection 	
Coordinate system:	
Global coordinate system	•
▼ Force	
Load type:	
Load defined as force per unit area	•
FA User defined	•
0 3000 0	x y z

Rys. 36 Zdefiniowanie obszaru działania siły, wykorzystywane równanie, wartości siły obciążającej. Następnie wykonano symulację, której wyniki zamieszczono poniżej:

• Naprężenia

Rys. 37 Rozkład naprężeń w stalowej kości udowej dla obustronnego utwierdzenia – ujęcie pierwsze

Rys. 38 Rozkład naprężeń w stalowej kości udowej dla obustronnego utwierdzenia – ujęcie drugie

Na podstawie otrzymanych wyników można zauważyć, iż naprężenia maksymalne występują w dolnej części szyjki kości udowej i wynoszą około 2,6x10⁴ N/m². Ponadto skupienie siły występuje także w bardzo niewielkim obszarze powierzchni przedniej oraz powierzchni rzepkowej i przyjmuje wartość rzędu 1,5x10⁴ N/m².

• Przemieszczenia

Na rysunku można zaobserwować znaczne przemieszczenie trzonu stalowej kości udowej w kierunku osi y, podczas gdy nasady: dolna i górna nie wykonują ruchu, co wynika z faktu ich utwierdzenia. Maksymalna wartość translokacji wynosi 4,39x10⁻⁸ m i przypada dla centralnej części trzonu. W miarę oddalania się od punktu centralnego kości, wartości przemieszczenia maleją.

11. Wnioski

W pracy został przedstawiony model kości udowej człowieka. Jest ona najdłuższą i najmocniejszą kością w całym szkielecie ludzkim. Model ten pokazuje jak odkształca się kość udowa pod wpływem działania przyłożonych sił. Po dokonaniu symulacji można odczytać występujące naprężenia oraz przemieszczenia pod wpływem wybranych obciążeń. W pracy analizie została poddana kość wykonana z materiału o właściwościach kości ludzkiej, jak i również kość stalowa.

W przypadku kości z materiału "bone" na początku została wygenerowana siatka elementów skończonych, która jest niezbędna do wykonania symulacji. W dalszej części

model został utwierdzony w miejscu występowania główki oraz wybrano miejsce przyłożenia sił. Ich wartości wynoszą: w kierunku osi x 10000 N/m², a w kierunku osi z 2000 N/m² (wartość podana z "-" gdyż siła skierowana w przeciwnym kierunku). W celu dokonania analizy w kolejnym etapie wybrano materiał z jakiego składa się nasz model. Należało wpisać w odpowiednie miejsca wartości takich parametrów materiału jak: gęstość, moduł Younga, współczynnik Poissona. Po wykonaniu tych wszystkich czynności można było przejść do symulacji. Wyniki jednoznacznie wskazują iż największe naprężenia występuja w szvice kości udowej oraz w części przedniej trzonu (maksymalna wartość 1,41x10⁵ N/m²). Przemieszczenie wystąpiło w dolnej części modelu i było równe 2 cm. W kolejnym etapie badań postanowiłyśmy sprawdzić wpływ zagęszczenia siatki czworościanów na dokładność analizy. W pierwszym etapie dokonałyśmy zagęszczenia siatki, a w następnym rozrzedzenia. W przypadku zageszczenia siatki wartość naprężeń zwiększyła się $(1.98 \times 10^5 \text{N/m}^2)$, natomiast w przypadku rozrzedzenia siatki wartość naprężeń znacznie zmalała (3,56x10⁶ N/m²). Można wywnioskować iż gęstość siatki czworościanów ma znaczny wpływ na dokładność wykonania analizy. Im jest ona gęstsza tym dokładniejszy otrzymujemy wynik. Wartość przemieszczeń nie uległa zmianie. W kolejnym kroku dodałyśmy dodatkowe utwierdzenie w części dolnej naszego modelu oraz dodatkową siłę o wartości jest równej 3000N/m² i działaniu w kierunku osi y. Po wykonaniu nowej symulacji można zauważyć iż kość ulega znacznemu przemieszczeniu (4,5x10⁻⁴m) w miejscu przyłożenia siły (środek trzonu kości). Naprężenie osiągnęło wartość $4,43 \times 10^5 \text{ N/m}^2$.

Następnie przeprowadzona została analiza kości stalowej. Procedura postępowania wyglądała bardzo podobnie jak już wcześniej opisana. Początkowo zaznaczono odpowiednią powierzchnię utwierdzenia (zamocowanie jednostronne). Przyjęto te same obszary co w poprzednim przypadku. Następnie określono warunki brzegowe i wartości siły obciążającej: 10 000 N/m² w kierunku osi x oraz -2000 N/m² w kierunku osi z. W kolejnym kroku wybrano materiał – Structuralsteel. Następnie wykonana analizę. Analiza wykazała, iż maksymalne naprężenia występują w powierzchni przedniej kości udowej (ma to związek z punktami przyłożenia siły) i wynoszą 1,41x10⁵ N/m². Kolejnym, najbardziej obciążonym punktem analizowanego kośćca jest dolna część szyjki kości udowej.Wychylenie z położenia początkowego nastąpiło w kierunku płaszczyzny xz. Przesunięcie dotyczyło nasady dolnej rozpatrywanej kości i osiągnęło wartość 0,00231 mm. W ramach dokonania pełnej analizy rozważono także przypadek zamocowania obustronnego metalowej struktury kostnej. Punkty utwierdzenia były identyczne jak dla przypadku materiału Bone. Zastosowano również taką

samą siłę obciążającą, o wartości 3000 N/m² w kierunku osi y. Na podstawie otrzymanych wyników można zauważyć, iż naprężenia maksymalne występują w dolnej części szyjki kości udowej i wynoszą około 2,6x10⁴ N/m², natomiast wystąpiło przemieszczenie trzonu stalowej kości udowej w kierunku osi y, podczas gdy nasady: dolna i górna nie wykonują ruchu, co wynika z faktu ich utwierdzenia. Maksymalna wartość translokacji wynosi 4,39x10⁻⁸ m i przypada dla centralnej części trzonu. W miarę oddalania się od punktu centralnego kości, wartości przemieszczenia maleją.

Porównując kości z materiału bone oraz stalową można zauważyć iż w przypadku utwierdzenia modelu w jednym punkcie naprężania mają taką samą wartość, a do najbardziej obciążonych części należy szyjka oraz przednia część trzonu kości udowej. Przemieszczenie wystąpiło w dolnej części modelu jednak w przypadku kości stalowej było ona znacznie mniejsze (0,00231m) niż w kości bone (0,02m). Po dodaniu kolejnej siły oraz punktu utwierdzenia maksymalne naprężenie w kości bone wynosi 4,43x10⁵ N/m², a w kości stalowej 2,6x10⁴ N/m². Przemieszczenia w kości bone są równe 4,5x10⁻⁴m, natomiast w kości stalowej 4,39x10⁻⁸m. Zarówno naprężenia jak i przemieszczenia są mniejsze w przypadku kości stalowej.

13. Literatura

[1] Ignasiak Z.: Anatomia układu ruchu. Wyd. Elsevier Urban & Partner, Wrocław 2007.

[2] http://static2.opracowania.pl/images/187370/szkielet_cz%C5%82owieka.jpg Dostęp: maj 2015 r.

[3] Woźniak W.: Anatomia człowieka. Wyd. Medyczne Urban & Partner, Wrocław 2001

[4] http://upload.wikimedia.org/wikipedia/commons/e/e4/Bone_cross-section-pl.svg Dostęp: maj 2015 r.

[5] Sokołowska-Pituchowa J.: *Anatomia człowieka*. PZWL, Warszawa 2008, Wyd. VIII pod red. W. Sylwanowicza

[6] http://www.zgapa.pl/data_content/referaty/html/10027/10027_html_m4f78c436.jpgDostęp: maj 2015 r.

[7] Jurczyk M., Jakubowicz J., *Bionanomateriały*, Wyd. Politechniki Poznańskiej, Poznań2008

[8] http://etacar.put.poznan.pl/jacek.buskiewicz/dydaktyka/bi/Konspekt_IB_W01.pdf Dostęp: maj 2015 r.

[9] Źródło: Irving P. Herman, "Physics of Human Body", Springer, Berlin, 2007

[10] Gabryszewski Z.: "Teoria sprężystości i plastyczności", Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2001

[11] Zielnica J.: "Wytrzymałość materiałów", Wyd. Politechniki Poznańskiej, Poznań 2001

[12] Bodnar A.: "Wytrzymałość Materiałów", Wydawnictwo Politechniki Krakowskiej, Kraków 2004

[13] Zienkiewicz O.C., Taylor R.L., The Finite Element Method, Vol. 1: The Basis, Butterworth-Heinemann, Oxford, 2000

[14] Dacko M, Borkowski W., Dobrociński S, Niezgoda T., Wieczorek M.: Metoda Elementów Skończonych w mechanice konstrukcji, Arkady, Warszawa 1994