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Chapter 1:   Abstracts 

 

 

1.1.  Abstract 

 

In this work the thermal convection phenomena, which occur in the two-

dimensional thin layer of fluid of infinite length. The layer is heated from below and 

simultaneously cooled at the top as a result the particles of the fluid begin to move 

creating convectional rolls. These phenomena are known as Rayleigh-Bénard 

convection. This problem is fully described by the couple of partial differential 

equations i.e. the Navier-Stokes equation and the thermal diffusion equation. These 

equations were transformed into the system of three ordinary differential equations 

well-known as the Lorenz model. This model is very useful in studying the chaotic 

behaviour of the fluid which occurs in described phenomena. The Lorenz model was 

used to carry out the computer simulation of convection showing the fluid behaviour 

with respect to different parameters. The results were compared with the simulation 

form the fluid dynamics program. Because of the fact that numerical calculation is  

never precise there was the analysis made which shows how the accuracy of 

calculation changes the result. Finally the pattern formation in convective fluid is 

described. This behaviour is characteristic for self-organized systems which manifest 

the ordered structure in the state far from equilibrium. 
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1.2. Polish abstract (streszczenie) 

 

W pracy zaprezentowane zostało zjawisko konwekcji cieplnej zachodzącej w 

cienkiej dwuwymiarowej warstwie płynu, o nieskończonej długości. Warstwa ta jest 

podgrzewana od dołu i jednocześnie chłodzona od góry, w efekcie cząsteczki płynu 

zaczynają się poruszać tworząc tzw. rolki konwekcyjne. Zjawisko to powszechnie 

znane jest jako konwekcja Rayleigha-Bénarda. Układ Opisany jest przy uŜyciu 

cząstkowych równań róŜniczkowych: równania Naviera-Stokesa oraz równanie 

przewodnictwa ciepła. Przekształcenie tych równań oraz dzięki zastosowanie 

rozwinięcia w szereg Fouriera przy pewnych załoŜeniach prowadzi do modelu 

opisanego za pomocą trzech zwyczajnych równań róŜniczkowych znanych 

powszechnie jako układ Lorenza. Układ ten umoŜliwia analizę chaotycznego 

zachowania płynu, jakie zachodzi w omawianym zjawisku. Model Lorenza został 

wykorzystany do przeprowadzenia symulacji komputerowej konwekcji prezentującej 

zachowanie się płynu dla róŜnych parametrów. Wyniki porównano z symulacją 

konwekcji otrzymaną z programu słuŜącego do analizy dynamiki płynów. PoniewaŜ 

obliczenia numeryczne obarczone są zawsze błędem związanym z zastosowaną 

metodą obliczeń przedstawiony równieŜ został wpływ, jaki ma precyzja 

wykonywanych obliczeń na uzyskane wyniki. Ponadto przedstawione zostało 

zjawisko tworzenia się regularnego wzoru, które towarzyszy konwekcji Rayleigha-

Bénarda. Takie zachowanie charakterystyczne jest dla systemów 

samoorganizujących się, które  zachowują się w sposób uporządkowany będąc w 

stanie dalekim od równowagi.  
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Chapter 2:   Introduction 

 

2.1. Rayleigh-Bénard Convection 

 

The Rayleigh-Bénard convection is a problem which has been studied for 

over a century and it's still a very interesting problem for many researchers all over 

the world, and it's used e.g. in astrophysics, geophysics, and atmospheric  

sciences [8]. This theory is very useful in describing weather phenomena and  

long-term climatic effects [11]; consequently there are many applications which are 

based on this theory, such as Solar Energy systems (e.g. Power Tower) [10], energy 

storage and material processing. Not only for its practical significance is this problem 

so important, but also for purely theoretical reasons as well. The Rayleigh-Bénard 

convection model is an infinite, thin layer of fluid (practically a very long). The fluid is 

heated from below while the top one stays colder. The temperature gradient is 

crucial for the problem: if it's below a certain value, the fluid stays stable despite its 

natural tendency to move because of its viscosity and thermal diffusivity. On the 

other hand, when the temperature gradient is over the critical value thermal 

instability occurs. The men who first considered the problem at the beginning of 20th 

century were Rayleigh and Bénard, the former provided some theoretical basis for 

the convection phenomena, while the latter executed some experiments in order to 

demonstrate the onset of thermal instability. The phenomena of thermal convection 

were called the Rayleigh-Bénard convection in their honour. However, there is a 

difference between their attitudes to the problem. Bénard's researches concerned 

the instability caused by the temperature dependence of the surface-tension 

coefficient whereas Rayleigh was interested in the convection which occurs and 

arises as a result of temperature and density nonuniformity. At present, the 

mechanism studied by Rayleigh is called the Rayleigh-Bénard convection while 

thermocapillary convection is called Bénard-Marangoni convection.  
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The mathematical model of this problem is set of non-linear coupled partial 

differential equations and the solution of this set is degenerate and non-unique [2]. 

This model is an example of a non-linear system and it can provide an insight into 

nonlinear phenomena studies. Another property of the Rayleigh-Bénard system is its 

time dependence, which seems to be one of the most important aspects of transition 

from laminar to turbulent flow [6]. It is believed that the Rayleigh-Bénard system is a 

very important part of low-dimensional and spatiotemporal chaos theories and, what 

is more, it's also a canonical example of a continuous system which is able to 

generate and sustain spatiotemporal chaos [4]. The system is also an example of 

self-organization (a pattern forming system) which makes it the most carefully 

studied system of this kind. Particularly synergetic specialists are interested in this 

system because it's possible to observe some essential features for nonlinear 

pattern-forming process [9]. Such formations of patterns occur in crystal growth, 

solidification fronts' propagation instabilities of nematic liquid crystal, buckling of thin 

plates and shells, etc. It's also possible to observe them in sand ripples on beaches 

and desert; in geological formations, in interacting laser beams, and instabilities of 

numerical algorithms.  
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2.2. Objective and layout 

 

 The main objective of this work is to create a simplified model of Rayleigh-

Bénard convection using the famous Lorenz differential equations system i.e. 

Mathematica. Having this model done it will be simulated using symbolic algebra 

system. The simulation will be connected with the discussion of the results. Finally 

another computer simulation will be done using fluid dynamics software and the 

result of this simulation will be compared with the previous one.  

 Firstly the geometry of the Rayleigh-Bénard convection model is presented in 

the third chapter, also the transition from thermal conduction to convection is shown. 

The next chapter is the introduction of the dimensionless constant i.e. the Rayleigh 

number which is an essential parameter of the description of considered model. The 

fifth chapter contains the full formal description of convection.  Standard equations of 

fluid mechanics and thermal energy diffusion are transformed to the well-known 

Lorenz model of convection. The chapter number six is the presentation of the 

computer simulation of the convection. Both Lorenz model of convection, and the 

CFD software results are shown. In addition to this, small discussion about 

numerical precision is carried out.  The next chapter is the description of the pattern 

formation phenomenon and the Rayleigh-Bénard convection is presented as an 

example of the self-organized system. Finally some conclusions are given in the 

ninth chapter. At the end of the work there are two appendix, where the former is the 

table of standard fluid properties while the latter is the listing of the program code. 
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Chapter 3:  Description of the geometry in Rayleigh-Bénard model 

 

The Geometry of the Rayleigh-Bénard model is presented below: 

 

Fig. 3.1: The fluid layer model. 

 

The model is a very long narrow fluid layer. There are fixed temperatures at 

the top CT  and at the bottom wT and the temperature at the bottom is higher so 

cw TT > . The difference of the temperature is expressed by the term cw TTT −=δ and 

this is one of the control parameters of the system. Convection appears when the 

temperature gradient is big enough, consequently a small packet of fluid starts to 

move up into the colder region of higher density. If the buoyant force caused by 

difference of density is big enough, then the pocket moves upward so fast that the 

temperature cannot drop and the convective flow appears. There is also possible 

that the buoyant force is not strong enough, in such a situation the temperature of 

the pocket is able to drop before it can move up too much, and as a result fluid stays 

stable.  

 

  

Fig. 3.2: Transition from thermal conduction to convective rolls in infinite two-

dimensional fluid layer. 
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Chapter 4:  The Rayleigh number 

 

Using information about thermal energy diffusion and viscous forces in fluid 

one can study the stability of the fluid [1]. First of all a small pocket of fluid is taken. It 

moves upward by a small distance z∆  so the surrounding temperature is lower by: 

 

)( z
h
T

T ∆=∆ δ
. (4.1) 

 

From the thermal energy diffusion equation one can obtain that the rate of change of 

temperature is equal to the thermal diffusion coefficient TD multiplied by the 

Laplacian of the temperature function. If the displacement is small enough the 

Laplacian may be approximated by: 

 

h
z

h
T

T
∆≈∇

2
2 δ

. (4.2) 

 

Now the thermal relaxation time Ttδ  will be defined such that: 

 

TDtT
dt
dT

t TTT
2∇=∆= δδ , (4.3) 

where the second equality follows from the thermal diffusion equation.  

 

Using Laplacian approximation it's obtained that Ttδ  is: 

 

T
T D

h
t

2

=δ . (4.4) 
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The next problem is the effect of the buoyant force on the pocket of fluid 

which is proportional to the density different between the pocket and its 

surroundings. On the other hand the density difference is proportional to the thermal 

expansion coefficient α and the temperature difference T∆ . Consequently the 

buoyant force may be calculated as: 

 

T
h
T

gTgF ∆=∆= δαραρ 00 , (4.5) 

where: 0ρ - the original fluid density; g - strength of the local gravitational field. 

 

Assuming that buoyant force balances the fluid viscous force the pocket 

moves with the constant velocity zυ  .Hence the displacement through a distance z∆  

takes for the pocket a time: 

 

z
d

z
υ

τ ∆= . (4.6) 

 

As the viscous force is equal to the viscosity of the fluid multiplied by the 

Laplacian of the velocity, the viscous force may be approximated as follows: 

 

2
2

h
F z

zv

υµυµ ≈∇= . (4.7) 

 

Now, by equating buoyant and viscous force one can obtain the zυ expression: 

 

z
Tgh

z ∆=
µ

δαρυ 0 , (4.8) 
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and the displacement time: 

 

Tghd δαρ
µτ

0

= . (4.9) 

 

If the thermal diffusion time is less than the corresponding displacement time 

the convection does not appear but if the thermal diffusion time is longer then the 

fluid pocket will continue to feel an upward force and the convection will continue. 

The factor which contains the ratio of the thermal diffusion time to the displacement 

time is the Rayleigh number R  and it takes form: 

 

µ
δαρ

TD
Tgh

R
3

0= . (4.10) 

 

The Rayleigh number is the critical parameter for the Rayleigh- Bénard convection. 
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Chapter 5:   Governing equations 

  

 There are several methods which could be used to derive the Lorenz 

equations system, one of them is presented below [5]. The Navier-Stokes equation 

for fluid flow and thermal energy diffusion equation are used. This problem, like 

many others, has no exact analytical solution, so approximation methods will be 

used in order to create a possibly reliable theoretical model. The Lorenz equations 

system is one of the most famous models in the domain of nonlinear dynamics i.e. it 

can be applied to describe the motion of the fluid under conditions of Rayleigh- 

Bénard flow which have been already presented.  

  

 As a result of the assumed two-dimensional geometry, only vertical and 

horizontal velocity components are considered. The form of Navier-Stokes equations 

for this case is as follows: 

 

 

xx
x

zz
z

x
p

grad
t

z
p

ggrad
t

υµυυρυρ

υµρυυρυρ

2

2

∇+
∂
∂−=⋅+

∂
∂

∇+
∂
∂−−=⋅+

∂
∂

r

r

, (5.1) 

 

where: ρ - mass density of the fluid; g - strength of the local gravitational field; p - 

fluid pressure; µ - fluid viscosity 

 

The next step is to describe the temperature T. It’s done using thermal 

diffusion equation in the form: 

 TDTgrad
t
T

T
2∇=⋅+

∂
∂ υr , (5.2) 

 

where TD  - thermal diffusion coefficient. 
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If the fluid stays stable (there are no convectional phenomena) the temperature 

changes linearly in accordance with the height (from the bottom to the top): 

 

 T
h
z

TtzxT w δ−=),,( . (5.3) 

 

 More important is how the temperature  changes when the convection 

appears so that the relation is not linear anymore. The function which describes 

temperature deviation from linear is ),,( tzxθ : 

 

 T
h
z

TtzxTtzx w δθ +−= ),,(),,( . (5.4) 

 

This function satisfies  the following equation: 

 

 θδυθυθ 2∇=−⋅+
∂
∂

tz D
h
T

grad
t

r
. (5.5) 

 

Fluid convection is the result of fluid density variation which depends directly 

on the temperature. The higher the temperature, the density decreases, so a 

buoyant force appears causing the convection phenomena. The fluid density 

variation can be described in terms of a power series expansion: 

 

 ...)()( 0 +−
∂
∂+= wTT
T

T
ρρρ  , (5.6) 

 

where 0ρ is the fluid density evaluated at wT  
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This equation can be presented in another form by introducing the thermal 

coefficient: 

 

 
T∂

∂−= ρ
ρ

α
0

1
. (5.7) 

 

Furthermore the expression )( wTT −  in (eq. 6.4) is used thus the equation of the 

density is as follows: 

 

 )],,([)( 00 tzxT
h
z

T θδαρρρ +−−= . (5.8) 

 

There are a few terms of The Navier-Stokes equation in which density ρ  

occurs, however according to Boussinesq approximation the density variation in may 

be ignored all terms except the one that involves gravity force [3]. The zv equation  

in (eq. 6.1) may be now written by applying this approximation in the following form: 

 

 zz
z tzxg

z
p

t
h
z

gggrad
t

υµθραδραρυυρυρ 2
00000 ),,( ∇++

∂
∂−−−=⋅+

∂
∂ r

. (5.9) 

 

If the fluid is stable the first three terms on the right-hand side must add to 0, then an 

effective pressure gradient is introduced. This gradient is equal to 0 if the fluid is not 

in motion: 

 

 

T
h
z

gg
z
p

z
p

h
Tz

ggzpp

δραρ

δραρ

00

2

00

'
2

'

++
∂
∂=

∂
∂

++=
. (5.10) 
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Now the effective pressure gradient is applied to the Navier-Stokes equations which 

are simultaneously divided through by 0ρ : 

 

 

xx
x

zz
z

x
p

grad
t

g
z
p

grad
t

υν
ρ

υυυ

υναθ
ρ

υυυ

2

0

2

0

'1

'1

∇+
∂
∂−=⋅+

∂
∂

∇++
∂
∂−=⋅+

∂
∂

r

r

, (5.11) 

 

where 
0ρ

µν =  - kinematic viscosity 
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5.1. Introducing dimensionless variables 

 

Now some dimensionless variables will be introduced in order to make the 

system much easier to study. This procedure is very important for seeing which 

combination of parameters is more important that the others.  

The new dimensionless time variable 't  is introduced: 

 t
h

D
t T

2
'=  , (5.12) 

 

where the expression 
2h

DT  is a typical thermal diffusion time over the distance h . 

 

Distance variables ',' zx : 

 

h
z

z

h
x

x

=

=

'

'
 . (5.13) 

 

Temperature variable 'θ : 

 

 
Tδ
θθ ='  . (5.14) 

 

Having these variables defined, it's also possible to introduce a dimensionless 

velocity: 

 

 

z
T

z

x
T

x

h

D
dt
dz

h

D
dt
dx

υυ

υυ

2

2

'
'

'

'
'

'

==

==
 . (5.15) 
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Then the new form of the Laplacian as follows: 

 

 222' ∇=∇ h  . (5.16) 

 

The next step is to put these variables into the Navier-Stokes equation and then 

myltiply through by
TD

h
ν

3

: 

 

 

x
T

x
xT

z
TT

z
zT

x
p

D
h

grad
t

D

D
Tgh

z
p

D
h

grad
t

D

''
'
'

''
'
'

'''
'
'

''
'
'

2

0

2

2
3

0

2

υ
ρν

υυυ
ν

υθ
ν

αδ
ρν

υυυ
ν

∇+
∂
∂−=







 ⋅+
∂

∂

+∇+
∂
∂−=







 ⋅+
∂

∂

r

r

 . (5.17) 

 

Now some of the dimensionless ratios can be replaced with well-known 

parameters. 

Prandtl number σ : 

 

 
TD

νσ =  . (5.18) 

 

Rayleigh number R : 

 

 T
D
gh

R
T

δ
ν
α 3

=  . (5.19) 

 

And the last parameter – a dimensionless pressure variable Π : 

 

 
0

2'
ρν TD

hp=Π  . (5.20) 
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Now the final form of Navier-Stokes and thermal diffusion equations is as falows: 

 

 

θυθυθ

υυυυ
σ

υθυυυ
σ

2

2

2

'''

''''
'
'1

''''
'
'1

∇=−⋅+
∂
∂

∇+
∂
Π∂−=







 ⋅+
∂

∂

∇++
∂
Π∂−=







 ⋅+
∂

∂

z

xx
x

zz
z

grad
t

x
grad

t

R
z

grad
t

r

r

r

 . (5.21) 

 

Since now primes will not be written but it's important to remember that they 

are still there.  
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5.2. The streamfunction representation of equations  

 

The Streamfunction is the kind of expression which includes the information 

about all fluid particles motion. The velocity of the fluid flow consists of two 

components which are the partial derivatives of the streamfunction: 

 

 

x
tzx

z
tzx

z

x

∂
Ψ∂=

∂
Ψ∂−=

),,(

),,(

υ

υ
 . (5.22) 

 

The thermal diffusion equation expressed in terms of the streamfunction: 

 

 θθθθ 2∇=
∂
Ψ∂−

∂
∂

∂
Ψ∂+

∂
∂

∂
Ψ∂−

∂
∂

xzxxzt
 . (5.23) 

 

The fluid flow equations: 

 

 

zzxzxxzzzt

x
R

zxzxxzxt

∂
Ψ∂∇−

∂
Π∂−=









∂∂
Ψ∂

∂
Ψ∂−

∂∂
Ψ∂

∂
Ψ∂+

∂∂
Ψ∂−

∂
Ψ∂∇++

∂
Π∂−=









∂∂
Ψ∂

∂
Ψ∂+

∂
Ψ∂

∂
Ψ∂−

∂∂
Ψ∂

2
222

2
2

2

22

1

1

σ

θ
σ

. (5.24) 

 

Combining these two equations together gives the following result: 

 

 

Ψ∇+
∂
∂=


















∂∂
Ψ∂

∂
Ψ∂−

∂
Ψ∂

∂
Ψ∂

∂
∂−









∂
Ψ∂

∂
Ψ∂−

∂∂
Ψ∂

∂
Ψ∂

∂
∂−Ψ∇

∂
∂

4

2

2

2

2

22
2 )(

1

x
R

xzxxzxzxzxzzt

θ
σ  (5.25) 
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Although the pressure term is no longer used, the equation is a complete description 

of fluid flow.  
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5.3. Fourier expansion of the streamfunction 

 

In order to solve such partial differential equations, Fourier expansion will be 

used. According to Fourier's Theorem, every periodic function may be expressed as 

a sum of a constant term and a series of sine and cosine terms. All the frequencies 

which are associated with these sines and cosines are integer harmonics of the 

fundamental frequency. Consequently the solution of the partial differential equation 

is a product of functions each of which depends on only one of the independent 

variables (x,z,t). By applying the orthogonalization procedure, the solution is 

expected to be of the following form [1]: 

 

 { } { })sin()cos()sin()cos(

),,(

,

, zDzCzBzAe

zyx

nnnn
nm

mmmm
tnm λλλλω +×+=

=Ψ

∑  , (5.26) 

 

where λs are the wavelengths of the various Fourier spatial mode and ωs are the 

corresponding frequencies. Such a series may be also expressed as an infinite set 

of equations.  And then the Galerkin technique is used in order to obtain a finite set 

of equations. 
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5.4. Boundary Conditions 

 

The boundary conditions for the temperature are as follows: 

 

 
01

00

=→=
=→=

θ
θ

z

z
. (5.27) 

 

It is so because of the fact that the temperature at the top and the bottom is fixed. 

 

Boundary conditions for the streamfunction - let the shear forces at the top and at 

the bottom be neglected: 

 

 

01

00

=
∂

∂
→=

=
∂

∂
→=

z
z

z
z

x

x

υ

υ

 . (5.28) 

 

The following expressions satisfy assumed conditions: 

 

 
)2sin()()cos()sin()(),,(

)sin()sin()(),,(

21 ztTaxztTtzx

axzttzx

ππθ
πψ

−=
=Ψ

 , (5.29) 

where the parameter a  is to be determined. 

 

The function Ψ is this part of model which is responsible for arising convective 

rolls which can be observed in real experiment. The second equation is the 

temperature deviation function which consists of two parts. The former part 

1T describes the temperature difference between the upward and downward moving 

parts of a convective cell, while the latter is the description of the deviation from the 

linear temperature variation in the centre of a convective cell as a as a function of 

vertical position z . 
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5.5. The Lorenz model of convection 

 

By substituting the assumed form into the (eqs. 6.23 and 6.25), equations for 

streamfunction and temperature deviation there are many terms which simplify and 

disappear: 
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The previous equation is true for all values of x and z only if the coefficients of the 

sine terms satisfy the following equation: 
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The form of the temperature deviation equation looks as follows: 
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Next coefficients 21,TT && are found: 
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Finally some new variables will be introduced in order to simplify the notation, the 

first of them is new time variable: 

 

 ')('' 22 tat += π  . (5.34) 

 

Using this variable and neglecting again primes, the following expressions are set: 
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Having all these parameters defined the Lorenz model can be written in the following 

form [2]: 
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Finally it's important to notice that the truncation of the sine-cosine which was 

made causes that the Lorenz model concerns only one spatial mode in the x  

direction with wavelength
a
π2

. If the spatial structure of the fluid flow is much more 

complex or the difference of temperature between top and bottom is too large the 

Lorenz model is no longer the appropriate description of the fluid dynamics.  
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Chapter 6:   Computer simulation 

 

The simulation of the convection was prepared using Wolfram Research 

software - Mathematica. This program is one of the most famous symbolic algebra 

systems and it is a fully integrated environment for technical computing. The 

simulation is based on the solution of the system of three ordinary differential 

equations known as the Lorenz system (5.36). In order to present to the convection 

phenomena there were maps of temperature generated for certain values of 

parameters i.e. Rayleigh number, Prandtl number etc. The oscillation and chaotic 

behaviour are presented using streamfunction spectra plots, the plots of attractors in 

the phase space and the velocity gradient fields. Finally there was carried out  

a simulation which shows how important is the precision of the numerical calculation, 

so that other plots of streamfunction were generated which show the comparison of 

results obtained with two different working precisions.   
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6.1. Oscillatory motion 

 

 Oscillatory motion is the transitional state of fluid which occurs when the 

temperature perturbation arises. The particles of fluid begin to move and the 

behaviour of the fluid seems as if it was convective. Yet the disturbances decrease 

in a short time and the state of fluid became stable. The simulation was made for the 

reduced Rayleigh number Rc=18 

 

 

 
 

Fig 6.1: The streamfunction plot in the 

domain of time. The amplitude of 

oscillations are damping. 

Fig 6.2: The plot of the attractor in the 

phase space 
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The changes of temperature distribution in the fluid layer are presented 

below. It starts when the pocket of fluid of higher temperature appears and arises. 

Next the pocket goes up, spreads and than comes back to the previous state. The 

process consists of several cycles and after that the fluid becomes stable. 

 

  
(a)  The pocket of the fluid of higher 

temperature appears 

 

(b)  The pocket arises. 

  
(c)  The particles of the fluid of higher 

temperature are spreading a little 

(d)  The fluid is coming back to the 

previous state. 

 

Fig 6.3: The sequence of the temperature maps. 
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6.2. Chaotic behaviour of fluid 

 

The chaotic behaviour of the fluid motion occurs when the reduced Rayleigh 

number is Rc>24.5, the simulation was made for the reduced Rayleigh number is 

Rc=28. The result of using the Lorenz model of convection is the characteristic 

strange attractor which is presented below: 

 

 

 

 

Fig. 6.4: The streamfunction plot in the 

domain of time. The oscillation increases 

and the system become non-periodic 

and consequently chaotic. 

Fig. 6.5. The plot of the strange attractor 

in the phase space.  
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Changes of the direction of the gradient of velocity are illustrated below with 

the plots of the velocity vector fields. 

 

 
Fig. 6.6: The plot of the velocity vector field at the dimensionless time t=14.1 

 

 
Fig. 6.7: The plot of the velocity vector field at the dimensionless time t=14.3 
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The sequence of the temperature maps was made in the range of the 

dimensionless time which contains the values used in the plot of the vector filed. The 

beginning of the process resembles the previous oscillatory motion but after that it's 

completely different. The state of the fluid doesn't tend to stability but it become non-

periodic and the fluid motion switch the direction from one to another. This chaotic 

behaviour is presented below: 

    

  
(a)  t=13.7 (b)  t=13.9 

 

 

 

(c)  t=14.0 (d)  t=14.1 
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(e) t=14.3 (f) t=14.6 

  
(g) t=14.7 (d) t=14.8 

 

Fig 6.8: the sequence of the temperature maps.  
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6.3. Numerical accuracy analysis 

  

 Nowadays computer simulation is very useful and powerful tool used 

commonly in a range of researches. Although it is hard to overrate its meaning it is 

very important to remember that nothing is perfect. Computer is limited by its 

construction which constrains simulations. Generally the most of calculation are 

done with the precision which is less or equal to the processor precision. It is 

impossible to obtain results with a freely high precision so every solution involves an 

inaccuracy. The second reason why the results are not sufficiently precise is that 

computer program must usually iterate the same operation for many times with a 

certain step. In order to increase the accuracy one must decrease the step of 

iteration so the time of calculation is longer. On the other hand there are many 

situations in which decreasing the step of iteration below the certain value is 

pointless because it doesn't change the result much.  

 Analysis of the chaotic system however is very difficult because of its 

sensitivity. Consequently every small change in calculation can be the reason of 

different results. In order to check the influence of the precision of numerical 

calculation, there were two solutions obtained and they turned out to be different to 

each other.  
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 The expected difference in results, obtained by solving the problem with two 

different working precisions, is presented below. The blue line represents the 

streamfunction which was solved with machine precision whereas the red one is the 

plot of the solution of higher - 40-digit precision calculation. Although at the 

beginning both plots are the same, they start to diverge at the dimensionless time 

ca. t=23.  

 

 

 

Fig 6.9: The plot of streamfunction solved using different precision. 
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6.4. CFD program simulation 

 

 The Computer Fluid Dynamics program was used in order to create another 

simulation of convection. Air properties were introduced as an input values, the 

temperature was set as before:16oC at the bottom and 6oC at the top of the fluid 

layer. The result of the simulation are is follows: 

 

  

(a) The beginning of the convection (b)Fluid pockets arises 

 

  

 (c) The fluid of greater temperature is 

spreading. 

(d) Convective rolls appear. 
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(e) Convective rolls. (f) The temperature map and the 

velocity vector field. 

 

Fig. 6.10 The sequence of the temperature maps.  
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Chapter 7:  Pattern formation 

 

The Rayleigh-Bénard system evolution is strictly dependent on the 

temperature difference across the fluid layer. Considering the evolution of the 

system such as the nondimensional temperature difference is increasing the 

convection phenomena occurs at some threshold Rayleigh number. There is no fluid 

flow below this certain value and the heat is transmitted only by conduction through 

the fluid. With respect to the horizontal walls and having neither special initial 

conditions nor any variations of the viscosity, the first spatial pattern is found to be a 

stationary system of parallel rolls. The velocity field of roll convection is nearly two 

dimensional aside from some usual irregularities or pattern defects.  

 

Although the disturbances which occur at the onset of the convection are 

described by a particular wave number, the pattern of the convection roll is 

completely unspecified. It is the result of the fact that a given wave vector can be 

resolved into two orthogonal components in infinitely many ways. In addition to this, 

the waves corresponding to different resolutions can be superposed with arbitrary 

amplitudes and phases. If the space is homogeneous so that there are neither 

directions nor point preferred in the horizontal plane the entire layer is divided into a 

mesh of regular polygons with the symmetry planes which are a cell walls [7].  

 

During the experiments two types of pattern are usually observed: 

1. Two dimensional rolls which occur when all the quantities depend on only one on 

the horizontal direction. Then the cells are infinitely elongated so that they can be 

called rolls instead of cells.  

2. Hexagonal cells – they occur when the system is the superposition of three roll 

sets with wavevectors having the same modulus and direct angle of 
3

2π
 to one 

another. There are two variants of this type of cells: l-cells and g-cells and they 
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are determined by the sign of velocity as a result of increasing or decreasing fluid 

in the centre of the cell. Mainly g-cells appear in gasses (that is the reason why 

the name is g-cell) and the l-cells can be observed in liquids (so the name is l-

cells). 

 
Fig 7.1: Schematic diagram of convection cells (a) two-dimensional rolls. (b) 

Hexagonal l- and g-cells. 
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Chapter 8:    Conclusions 

 

 The results of the simulation show the different kind of behaviour of the fluid 

flow. The Lorenz model of convection provides both the oscillatory fluid motion of 

damped amplitude which tends to the stable state, and the non-periodical chaotic 

fluid behaviour. On the other hand the simulation of convection phenomena were 

presented using the fluid dynamics software. These results are similar to the 

previous results, which is a good sign that the Lorenz model can be used as  

a description of convection when the quite simple example is considered. The 

Lorenz model is only appropriate for the small Rayleigh numbers when the 

temperature difference is small enough.  

The results of the simulation proved that the precision of the numerical 

calculation have the significant influence on the solution accuracy and reliability. It is 

essential part of analysis of chaotic systems.  

The Rayleigh-Bénard convection is also an example of self-organization 

which is a very interesting feature of some chaotic systems. The phenomenon is 

based on the fact that the system which is far from the equilibrium state manifests 

highly ordered structure. 
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Appendix A - Program listing 

 
(* Including necessary Mathematica's packages *) 
 
<<Graphics`PlotField` 
<<Graphics`Animation` 
<<Graphics`Legend` 
 
(* Defining parameters of the equations system *) 
 
(* length *) 
L =Sqrt[2]; 
 
(* height *) 
h =1; 
 
(* wavelength *) 
a=π/L; 
 
(* Prandtl number *) 
σ=10; 
 
(* Reduced Rayleigh number *) 
r=28; 
 
(* geometrical ratio *) 
b=4* π^2/(a^2+ π^2); 
 
(* temperature at the top *) 
Tc=6; 
 
(* temperature at the bottom *) 
Tw=16; 
 
(* temperatur difference *) 
δT=Tw-Tc; 
 
(* the end of time range *) 
endTime=50; 
 
(* the parameters of transformation *) 
coeff1=((a^2+ π^2)*Sqrt[2])/(a* π); 
coeff2=Sqrt[2]/(r* π); 
coeff3=1/( π*r); 
 
(* Solving the set of ordinary differential equatio ns, all the computation 
will be done with the machine numbers*) 
solution=NDSolve[{ 

x'[t] �σ*(y[t]-x[t]), 
y'[t] �r*x[t]-x[t] z[t]-y[t], 
z'[t] �x[t] y[t]-b* z[t], 
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x[0] �z[0] �1, 
y[0] �0}, 
{x,y,z}, 
{t,0,endTime}, 
MaxSteps →Infinity, 
WorkingPrecision →MachinePrecision 

]; 
(* this solution will be done with 40-digit presici on *) 
solution2=NDSolve[{ 

x'[t] �σ*(y[t]-x[t]), 
y'[t] �r*x[t]-x[t] z[t]-y[t], 
z'[t] �x[t] y[t]-b* z[t], 
x[0] �z[0] �1, 
y[0] �0}, 
{x,y,z}, 
{t,0,endTime}, 
MaxSteps →Infinity, 

 
      WorkingPrecision →40 
  ]; 
 
(*Defining the function to solve the streamfunction  *) 
Psi[wx_,wz_,t_]:= 
    (coeff1*x[t]/.solution)*Sin[ π*wz]*Sin[a*wx]; 
 
(*Defining the function to solve the temperature de viation *) 
Dev[wx_,wz_,t_]:= 
    δT^1*((coeff2*y[t]/.solution)*Sin[ π*wz]*Cos[a*wx]-
(coeff3*z[t]/.solution)*Sin[2* π*wz]); 
 
(*Defining the function to solve the temperature de viation with higher 
precision*) 
Dev2[wx_,wz_,t_]:= δT^1*((coeff2*y[t]/.solution2)*Sin[ π*wz]*Cos[a*wx]-
(coeff3*z[t]/.solution2)*Sin[2* π*wz]); 
 
 
 
(*Defining the function to solve the temperature *)  
Theta[wx_,wz_,t_]:= 
    Dev[wx,wz,t]+Tw-wz/h* δT; 
 
(*Defining the function to solve the temperature  w ith higher precision*) 
Theta2[wx_,wz_,t_]:= 
    Dev2[wx,wz,t]+Tw-wz/h* δT; 
 
 
 
(*Defining the function to solve the x-component of  velocity vector *) 
Vx[wx_,wz_,t_]:= 
  Module[{wwx,wwz,tt,res}, 
    res=-D[Psi[wwx,wwz,tt],wwx]; 
    res=res/.{wwx →wx,wwz→wz,tt →t}; 
    Return[res]; 
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] 
 
(*Defining the function to solve the z-component of  velocity vector *) 
Vz[wx_,wz_,t_]:= 
  Module[{wwx,wwz,tt,res}, 
    res=D[Psi[wwx,wwz,tt],wwz]; 
    res=res/.{wwx →wx,wwz→wz,tt →t}; 
    Return[res]; 
] 
 
(* Plotting the attractor *) 
ParametricPlot3D[ 
  Evaluate[{x[t],y[t],z[t]}/.sol], 
  {t,0,50}, 
  PlotPoints →5000, 
  Boxed →False, 
  Axes →False, 
  ImageSize →{500,530} 
] 
 
(* Plotting the stramfunction*) 
Plot[ 
  Psi[L/2,3/4,s], 
  {s,0,30}, 
  ImageSize →{300,250}, 
  PlotPoints →5000, 
  PlotRange →{-30,30}, 
  AxesLabel →{"t"," ψ"} 
] 
 
(* Plotting temperature map *) 
TemperaturePlots={} 
Do[ 
  AppendTo[ 
    TemperaturePlots, 
    ShowLegend[ 
      DensityPlot[ 
        Theta[wx,wz,s][[1]], 
        {wx,0,2*L}, 
        {wz,0,1}, 
        ColorFunction →(RGBColor[#,1-#,1-#]&), 
        Mesh →False,PlotPoints →100, 
        DisplayFunction →Identity, 
        ImageSize →{280,280} 
      ], 
      {RGBColor[#,1-#,1-#]&,25, 
      ToString[Tc], 
      ToString[Tw], 
      LegendPosition →{1.1,-.8}, 
      LegendSize →{0.3,1.7}} 
    ], 
  ], 
  {s,16,18,0.1} 
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]; 
 
 
(* Plotting the velocity vector field *) 
 
PlotVectorField[ 
  {Vz[wx,wz,14.1][[1]],Vx[wx,wz,14.1][[1]]}, 
  {wx,0,2 L}, 
  {wz,0,1}, 
  AspectRatio →0.3, 
  HeadLength →0.02, 
  HeadCenter →1, 
  HeadWidth →0.2, 
  ScaleFunction →(0.003#&), 
  ScaleFactor →None 
]  
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Appendix B - fluid properties 

 

The tables which are presented below contain some standard values that are 

used in describing fluids. These properties are necessary to describe fluid flow and 

they are used to determine the values of some dimensionless numbers. There were 

two of such numbers determined (assuming that the height of the fluid layer is 1m 

and the temperature difference between top and bottom is 16 oC): Rayleigh number, 

Prandtl number. 

 

 

Properties of air at 20oC : 

 

Property Value Units 

Density 1.2047 3m
kg

 

Dynamic viscosity 1.8205E-5 
sm

kg
⋅

 

Kinematic viscosity 1.5111E-5 
s

m2

 

Thermal diffusion coefficient 2.1117E-5 
s

m2

 

Thermal expansion coefficient 3.4112E-3 
K
1

 

Prandtl number 0.71559  

Rayleigh number 1.0487E+6  
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Properties of water at 20oC : 

 

Property Value Units 

Density 1.2047 3m
kg

 

Dynamic viscosity 9.7720E-4 
sm

kg
⋅

 

Kinematic viscosity 9.7937E-7 
s

m2

 

Thermal diffusion coefficient 1.4868E-7 
s

m2

 

Thermal expansion 

coefficient 
3.4112E-3 

K
1

 

Prandtl number 6.5870  

Rayleigh number 2.29814E+9  
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